DATA SCIENCE

DATA SCIENCE

Author: Dr.Venkataramana Sarella

Publisher: GCS PUBLISHERS

Published: 2022-05-01

Total Pages: 288

ISBN-13: 9394304223

DOWNLOAD EBOOK

DATA SCIENCE WRITTEN BY Dr.Venkataramana Sarella,Mr. Sandeep Srivastava, Dr.K.Jamberi, Dr.Syed Khasim


Book Synopsis DATA SCIENCE by : Dr.Venkataramana Sarella

Download or read book DATA SCIENCE written by Dr.Venkataramana Sarella and published by GCS PUBLISHERS. This book was released on 2022-05-01 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: DATA SCIENCE WRITTEN BY Dr.Venkataramana Sarella,Mr. Sandeep Srivastava, Dr.K.Jamberi, Dr.Syed Khasim


Introduction to Biomedical Data Science

Introduction to Biomedical Data Science

Author: Robert Hoyt

Publisher: Lulu.com

Published: 2019-11-25

Total Pages: 260

ISBN-13: 179476173X

DOWNLOAD EBOOK

Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.


Book Synopsis Introduction to Biomedical Data Science by : Robert Hoyt

Download or read book Introduction to Biomedical Data Science written by Robert Hoyt and published by Lulu.com. This book was released on 2019-11-25 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.


Data Science Fundamentals and Practical Approaches

Data Science Fundamentals and Practical Approaches

Author: Nandi Dr. Rupam Dr. Gypsy, Kumar Sharma

Publisher: BPB Publications

Published: 2020-09-03

Total Pages: 580

ISBN-13: 938984567X

DOWNLOAD EBOOK

Learn how to process and analysis data using Python Key Features a- The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. a- The book is quite well balanced with programs and illustrative real-case problems. a- The book not only deals with the background mathematics alone or only the programs but also beautifully correlates the background mathematics to the theory and then finally translating it into the programs. a- A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. Description This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems. Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic. What will you learn a- Understand what machine learning is and how learning can be incorporated into a program. a- Perform data processing to make it ready for visual plot to understand the pattern in data over time. a- Know how tools can be used to perform analysis on big data using python a- Perform social media analytics, business analytics, and data analytics on any data of a company or organization. Who this book is for The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. Table of Contents 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics About the Authors Dr. Gypsy Nandi is an Assistant Professor (Sr) in the Department of Computer Applications, Assam Don Bosco University, India. Her areas of interest include Data Science, Social Network Mining, and Machine Learning. She has completed her Ph.D. in the field of 'Social Network Analysis and Mining'. Her research scholars are currently working mainly in the field of Data Science. She has several research publications in reputed journals and book series. Dr. Rupam Kumar Sharma is an Assistant Professor in the Department of Computer Applications, Assam Don Bosco University, India. His area of interest includes Machine Learning, Data Analytics, Network, and Cyber Security. He has several research publications in reputed SCI and Scopus journals. He has also delivered lectures and trained hundreds of trainees and students across different institutes in the field of security and android app development.


Book Synopsis Data Science Fundamentals and Practical Approaches by : Nandi Dr. Rupam Dr. Gypsy, Kumar Sharma

Download or read book Data Science Fundamentals and Practical Approaches written by Nandi Dr. Rupam Dr. Gypsy, Kumar Sharma and published by BPB Publications. This book was released on 2020-09-03 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to process and analysis data using Python Key Features a- The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. a- The book is quite well balanced with programs and illustrative real-case problems. a- The book not only deals with the background mathematics alone or only the programs but also beautifully correlates the background mathematics to the theory and then finally translating it into the programs. a- A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. Description This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems. Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic. What will you learn a- Understand what machine learning is and how learning can be incorporated into a program. a- Perform data processing to make it ready for visual plot to understand the pattern in data over time. a- Know how tools can be used to perform analysis on big data using python a- Perform social media analytics, business analytics, and data analytics on any data of a company or organization. Who this book is for The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. Table of Contents 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics About the Authors Dr. Gypsy Nandi is an Assistant Professor (Sr) in the Department of Computer Applications, Assam Don Bosco University, India. Her areas of interest include Data Science, Social Network Mining, and Machine Learning. She has completed her Ph.D. in the field of 'Social Network Analysis and Mining'. Her research scholars are currently working mainly in the field of Data Science. She has several research publications in reputed journals and book series. Dr. Rupam Kumar Sharma is an Assistant Professor in the Department of Computer Applications, Assam Don Bosco University, India. His area of interest includes Machine Learning, Data Analytics, Network, and Cyber Security. He has several research publications in reputed SCI and Scopus journals. He has also delivered lectures and trained hundreds of trainees and students across different institutes in the field of security and android app development.


Python for Data Science For Dummies

Python for Data Science For Dummies

Author: John Paul Mueller

Publisher: John Wiley & Sons

Published: 2023-10-03

Total Pages: 471

ISBN-13: 1394213093

DOWNLOAD EBOOK

Let Python do the heavy lifting for you as you analyze large datasets Python for Data Science For Dummies lets you get your hands dirty with data using one of the top programming languages. This beginner’s guide takes you step by step through getting started, performing data analysis, understanding datasets and example code, working with Google Colab, sampling data, and beyond. Coding your data analysis tasks will make your life easier, make you more in-demand as an employee, and open the door to valuable knowledge and insights. This new edition is updated for the latest version of Python and includes current, relevant data examples. Get a firm background in the basics of Python coding for data analysis Learn about data science careers you can pursue with Python coding skills Integrate data analysis with multimedia and graphics Manage and organize data with cloud-based relational databases Python careers are on the rise. Grab this user-friendly Dummies guide and gain the programming skills you need to become a data pro.


Book Synopsis Python for Data Science For Dummies by : John Paul Mueller

Download or read book Python for Data Science For Dummies written by John Paul Mueller and published by John Wiley & Sons. This book was released on 2023-10-03 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let Python do the heavy lifting for you as you analyze large datasets Python for Data Science For Dummies lets you get your hands dirty with data using one of the top programming languages. This beginner’s guide takes you step by step through getting started, performing data analysis, understanding datasets and example code, working with Google Colab, sampling data, and beyond. Coding your data analysis tasks will make your life easier, make you more in-demand as an employee, and open the door to valuable knowledge and insights. This new edition is updated for the latest version of Python and includes current, relevant data examples. Get a firm background in the basics of Python coding for data analysis Learn about data science careers you can pursue with Python coding skills Integrate data analysis with multimedia and graphics Manage and organize data with cloud-based relational databases Python careers are on the rise. Grab this user-friendly Dummies guide and gain the programming skills you need to become a data pro.


Data Science from Scratch

Data Science from Scratch

Author: Joel Grus

Publisher: O'Reilly Media

Published: 2019-04-12

Total Pages: 398

ISBN-13: 1492041106

DOWNLOAD EBOOK

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. With this updated second edition, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.


Book Synopsis Data Science from Scratch by : Joel Grus

Download or read book Data Science from Scratch written by Joel Grus and published by O'Reilly Media. This book was released on 2019-04-12 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. With this updated second edition, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.


Roundtable on Data Science Postsecondary Education

Roundtable on Data Science Postsecondary Education

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-10-02

Total Pages: 223

ISBN-13: 030967770X

DOWNLOAD EBOOK

Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting.


Book Synopsis Roundtable on Data Science Postsecondary Education by : National Academies of Sciences, Engineering, and Medicine

Download or read book Roundtable on Data Science Postsecondary Education written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-10-02 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting.


Ethical Practice of Statistics and Data Science

Ethical Practice of Statistics and Data Science

Author: Rochelle Tractenberg

Publisher: Ethics International Press

Published: 2022-10-25

Total Pages: 685

ISBN-13: 1804410772

DOWNLOAD EBOOK

Ethical Practice of Statistics and Data Science is intended to prepare people to fully assume their responsibilities to practice statistics and data science ethically. Aimed at early career professionals, practitioners, and mentors or supervisors of practitioners, the book supports the ethical practice of statistics and data science, with an emphasis on how to earn the designation of, and recognize, “the ethical practitioner”. The book features 47 case studies, each mapped to the Data Science Ethics Checklist (DSEC); Data Ethics Framework (DEFW); the American Statistical Association (ASA) Ethical Guidelines for Statistical Practice; and the Association of Computing Machinery (ACM) Code of Ethics. It is necessary reading for students enrolled in any data intensive program, including undergraduate or graduate degrees in (bio-)statistics, business/analytics, or data science. Managers, leaders, supervisors, and mentors who lead data-intensive teams in government, industry, or academia would also benefit greatly from this book. This is a companion volume to Ethical Reasoning For A Data-Centered World, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the ASA and ACM Ethical Guidelines/Code of Ethics.


Book Synopsis Ethical Practice of Statistics and Data Science by : Rochelle Tractenberg

Download or read book Ethical Practice of Statistics and Data Science written by Rochelle Tractenberg and published by Ethics International Press. This book was released on 2022-10-25 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ethical Practice of Statistics and Data Science is intended to prepare people to fully assume their responsibilities to practice statistics and data science ethically. Aimed at early career professionals, practitioners, and mentors or supervisors of practitioners, the book supports the ethical practice of statistics and data science, with an emphasis on how to earn the designation of, and recognize, “the ethical practitioner”. The book features 47 case studies, each mapped to the Data Science Ethics Checklist (DSEC); Data Ethics Framework (DEFW); the American Statistical Association (ASA) Ethical Guidelines for Statistical Practice; and the Association of Computing Machinery (ACM) Code of Ethics. It is necessary reading for students enrolled in any data intensive program, including undergraduate or graduate degrees in (bio-)statistics, business/analytics, or data science. Managers, leaders, supervisors, and mentors who lead data-intensive teams in government, industry, or academia would also benefit greatly from this book. This is a companion volume to Ethical Reasoning For A Data-Centered World, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the ASA and ACM Ethical Guidelines/Code of Ethics.


Data Science Applied to Sustainability Analysis

Data Science Applied to Sustainability Analysis

Author: Jennifer Dunn

Publisher: Elsevier

Published: 2021-05-11

Total Pages: 312

ISBN-13: 0128179775

DOWNLOAD EBOOK

Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery Includes considerations sustainability analysts must evaluate when applying big data Features case studies illustrating the application of data science in sustainability analyses


Book Synopsis Data Science Applied to Sustainability Analysis by : Jennifer Dunn

Download or read book Data Science Applied to Sustainability Analysis written by Jennifer Dunn and published by Elsevier. This book was released on 2021-05-11 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery Includes considerations sustainability analysts must evaluate when applying big data Features case studies illustrating the application of data science in sustainability analyses


Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions

Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-02-06

Total Pages: 165

ISBN-13: 0309450810

DOWNLOAD EBOOK

The Office of the Under Secretary of Defense (Personnel & Readiness), referred to throughout this report as P&R, is responsible for the total force management of all Department of Defense (DoD) components including the recruitment, readiness, and retention of personnel. Its work and policies are supported by a number of organizations both within DoD, including the Defense Manpower Data Center (DMDC), and externally, including the federally funded research and development centers (FFRDCs) that work for DoD. P&R must be able to answer questions for the Secretary of Defense such as how to recruit people with an aptitude for and interest in various specialties and along particular career tracks and how to assess on an ongoing basis service members' career satisfaction and their ability to meet new challenges. P&R must also address larger-scale questions, such as how the current realignment of forces to the Asia-Pacific area and other regions will affect recruitment, readiness, and retention. While DoD makes use of large-scale data and mathematical analysis in intelligence, surveillance, reconnaissance, and elsewhereâ€"exploiting techniques such as complex network analysis, machine learning, streaming social media analysis, and anomaly detectionâ€"these skills and capabilities have not been applied as well to the personnel and readiness enterprise. Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions offers and roadmap and implementation plan for the integration of data analysis in support of decisions within the purview of P&R.


Book Synopsis Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions by : National Academies of Sciences, Engineering, and Medicine

Download or read book Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2017-02-06 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Office of the Under Secretary of Defense (Personnel & Readiness), referred to throughout this report as P&R, is responsible for the total force management of all Department of Defense (DoD) components including the recruitment, readiness, and retention of personnel. Its work and policies are supported by a number of organizations both within DoD, including the Defense Manpower Data Center (DMDC), and externally, including the federally funded research and development centers (FFRDCs) that work for DoD. P&R must be able to answer questions for the Secretary of Defense such as how to recruit people with an aptitude for and interest in various specialties and along particular career tracks and how to assess on an ongoing basis service members' career satisfaction and their ability to meet new challenges. P&R must also address larger-scale questions, such as how the current realignment of forces to the Asia-Pacific area and other regions will affect recruitment, readiness, and retention. While DoD makes use of large-scale data and mathematical analysis in intelligence, surveillance, reconnaissance, and elsewhereâ€"exploiting techniques such as complex network analysis, machine learning, streaming social media analysis, and anomaly detectionâ€"these skills and capabilities have not been applied as well to the personnel and readiness enterprise. Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions offers and roadmap and implementation plan for the integration of data analysis in support of decisions within the purview of P&R.


Dive Into Data Science

Dive Into Data Science

Author: Bradford Tuckfield

Publisher: No Starch Press

Published: 2023-07-04

Total Pages: 289

ISBN-13: 1718502885

DOWNLOAD EBOOK

Learn how to use data science and Python to solve everyday business problems. Dive into the exciting world of data science with this practical introduction. Packed with essential skills and useful examples, Dive Into Data Science will show you how to obtain, analyze, and visualize data so you can leverage its power to solve common business challenges. With only a basic understanding of Python and high school math, you’ll be able to effortlessly work through the book and start implementing data science in your day-to-day work. From improving a bike sharing company to extracting data from websites and creating recommendation systems, you’ll discover how to find and use data-driven solutions to make business decisions. Topics covered include conducting exploratory data analysis, running A/B tests, performing binary classification using logistic regression models, and using machine learning algorithms. You’ll also learn how to: Forecast consumer demand Optimize marketing campaigns Reduce customer attrition Predict website traffic Build recommendation systems With this practical guide at your fingertips, harness the power of programming, mathematical theory, and good old common sense to find data-driven solutions that make a difference. Don’t wait; dive right in!


Book Synopsis Dive Into Data Science by : Bradford Tuckfield

Download or read book Dive Into Data Science written by Bradford Tuckfield and published by No Starch Press. This book was released on 2023-07-04 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use data science and Python to solve everyday business problems. Dive into the exciting world of data science with this practical introduction. Packed with essential skills and useful examples, Dive Into Data Science will show you how to obtain, analyze, and visualize data so you can leverage its power to solve common business challenges. With only a basic understanding of Python and high school math, you’ll be able to effortlessly work through the book and start implementing data science in your day-to-day work. From improving a bike sharing company to extracting data from websites and creating recommendation systems, you’ll discover how to find and use data-driven solutions to make business decisions. Topics covered include conducting exploratory data analysis, running A/B tests, performing binary classification using logistic regression models, and using machine learning algorithms. You’ll also learn how to: Forecast consumer demand Optimize marketing campaigns Reduce customer attrition Predict website traffic Build recommendation systems With this practical guide at your fingertips, harness the power of programming, mathematical theory, and good old common sense to find data-driven solutions that make a difference. Don’t wait; dive right in!