Radiative Heat Transfer in Turbulent Combustion Systems

Radiative Heat Transfer in Turbulent Combustion Systems

Author: Michael F. Modest

Publisher: Springer

Published: 2016-01-06

Total Pages: 151

ISBN-13: 3319272918

DOWNLOAD EBOOK

This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.


Book Synopsis Radiative Heat Transfer in Turbulent Combustion Systems by : Michael F. Modest

Download or read book Radiative Heat Transfer in Turbulent Combustion Systems written by Michael F. Modest and published by Springer. This book was released on 2016-01-06 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.


Radiative Heat Transfer

Radiative Heat Transfer

Author: Michael F. Modest

Publisher: Academic Press

Published: 2021-10-16

Total Pages: 1018

ISBN-13: 032398407X

DOWNLOAD EBOOK

Radiative Heat Transfer, Fourth Edition is a fully updated, revised and practical reference on the basic physics and computational tools scientists and researchers use to solve problems in the broad field of radiative heat transfer. This book is acknowledged as the core reference in the field, providing models, methodologies and calculations essential to solving research problems. It is applicable to a variety of industries, including nuclear, solar and combustion energy, aerospace, chemical and materials processing, as well as environmental, biomedical and nanotechnology fields. Contemporary examples and problems surrounding sustainable energy, materials and process engineering are an essential addition to this edition. Includes end-of-chapter problems and a solutions manual, providing a structured and coherent reference Presents many worked examples which have been brought fully up-to-date to reflect the latest research Details many computer codes, ranging from basic problem solving aids to sophisticated research tools


Book Synopsis Radiative Heat Transfer by : Michael F. Modest

Download or read book Radiative Heat Transfer written by Michael F. Modest and published by Academic Press. This book was released on 2021-10-16 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiative Heat Transfer, Fourth Edition is a fully updated, revised and practical reference on the basic physics and computational tools scientists and researchers use to solve problems in the broad field of radiative heat transfer. This book is acknowledged as the core reference in the field, providing models, methodologies and calculations essential to solving research problems. It is applicable to a variety of industries, including nuclear, solar and combustion energy, aerospace, chemical and materials processing, as well as environmental, biomedical and nanotechnology fields. Contemporary examples and problems surrounding sustainable energy, materials and process engineering are an essential addition to this edition. Includes end-of-chapter problems and a solutions manual, providing a structured and coherent reference Presents many worked examples which have been brought fully up-to-date to reflect the latest research Details many computer codes, ranging from basic problem solving aids to sophisticated research tools


Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer

Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer

Author: Rogério Goncalves Dos santos

Publisher:

Published: 2008

Total Pages: 125

ISBN-13:

DOWNLOAD EBOOK

The combustion is one of the principal ways to produced energy used nowadays, it is also a complex phenomenon, where the turbulent flow, chemical reactions, different phases and different heat transfer phenomena can interact. Better understanding of these interactions is essential to improve the actual combustion system and to developed the new ones. The goal of this thesis is to study the interaction of the turbulent combustion with the thermal radiation by the use of three-dimensional numerical simulation. For that, using a computational tool named CORBA, a code for the combustion Large Eddy Simulation (LES) was coupled with a radiative heat transfer code. This technique allows the exchange of information between the two codes without big changes in their structure, then it is possible to take advantages of the different characteristic time from each phenomenon in a high performance parallel computational environment. In a first time, two-dimensional simulation of a turbulent propane/air premixed flame stabilized downstream a triangular flame holder has been realised. After the changing of the twodimensional radiation code for another three-dimensional one, the same configuration was simulated in 3D. A mesh with more than 4.7 millions cells for the combustion code (AVBP) and more than 3.3 millions cells for the radiation code (DOMASIUM) are used. Results show a changing in the temperature and species fields, as well as in the flame dynamics when the thermal radiation was taken into account, with a minor intensity in the three-dimensional simulations. This method, also, shows that it is possible to perform 3D complex simulations in a industrial acceptable time.


Book Synopsis Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer by : Rogério Goncalves Dos santos

Download or read book Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer written by Rogério Goncalves Dos santos and published by . This book was released on 2008 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion is one of the principal ways to produced energy used nowadays, it is also a complex phenomenon, where the turbulent flow, chemical reactions, different phases and different heat transfer phenomena can interact. Better understanding of these interactions is essential to improve the actual combustion system and to developed the new ones. The goal of this thesis is to study the interaction of the turbulent combustion with the thermal radiation by the use of three-dimensional numerical simulation. For that, using a computational tool named CORBA, a code for the combustion Large Eddy Simulation (LES) was coupled with a radiative heat transfer code. This technique allows the exchange of information between the two codes without big changes in their structure, then it is possible to take advantages of the different characteristic time from each phenomenon in a high performance parallel computational environment. In a first time, two-dimensional simulation of a turbulent propane/air premixed flame stabilized downstream a triangular flame holder has been realised. After the changing of the twodimensional radiation code for another three-dimensional one, the same configuration was simulated in 3D. A mesh with more than 4.7 millions cells for the combustion code (AVBP) and more than 3.3 millions cells for the radiation code (DOMASIUM) are used. Results show a changing in the temperature and species fields, as well as in the flame dynamics when the thermal radiation was taken into account, with a minor intensity in the three-dimensional simulations. This method, also, shows that it is possible to perform 3D complex simulations in a industrial acceptable time.


Heat Transfer in Radiating and Combusting Systems

Heat Transfer in Radiating and Combusting Systems

Author: Maria G. Carvalho

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 619

ISBN-13: 3642846378

DOWNLOAD EBOOK

This volume contains the selected papers presented at the EUROTHERM SEMINAR No. 17 - Heat Transfer in Radiating and Combusting Systems held at Cascais from October 8th- 10th, 1990. The EUROTHERM COMMITTEE was created by representatives of the member countries of the European Communities for the organization and coordination of European Scientific events in the field of thermal sciences and their applications. The book is focused on the integration of the heat transfer and combustion. These two subjects have traditionally been considered separate disciplines. In reality, the two are closely interwoven. The central purpose of the book is to generate an effective cross fertilisation of the two at both the fundamental and applied levels. The book reports on: mathematical simulations of heat transfer in reacting systems, new measurements of and measurement techniques for the radiation properties of the intervening medium, and data and theoretical analyses which clarify the physical nature of the complex interactions between the radiation/convection heat transfer processes and the combustion and turbulence of real reacting flows.


Book Synopsis Heat Transfer in Radiating and Combusting Systems by : Maria G. Carvalho

Download or read book Heat Transfer in Radiating and Combusting Systems written by Maria G. Carvalho and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the selected papers presented at the EUROTHERM SEMINAR No. 17 - Heat Transfer in Radiating and Combusting Systems held at Cascais from October 8th- 10th, 1990. The EUROTHERM COMMITTEE was created by representatives of the member countries of the European Communities for the organization and coordination of European Scientific events in the field of thermal sciences and their applications. The book is focused on the integration of the heat transfer and combustion. These two subjects have traditionally been considered separate disciplines. In reality, the two are closely interwoven. The central purpose of the book is to generate an effective cross fertilisation of the two at both the fundamental and applied levels. The book reports on: mathematical simulations of heat transfer in reacting systems, new measurements of and measurement techniques for the radiation properties of the intervening medium, and data and theoretical analyses which clarify the physical nature of the complex interactions between the radiation/convection heat transfer processes and the combustion and turbulence of real reacting flows.


ADVANCED SOOT AND RADIATION MODELS FOR LAMINAR AND TURBULENT FLAMES.

ADVANCED SOOT AND RADIATION MODELS FOR LAMINAR AND TURBULENT FLAMES.

Author: Sebastian Ferreyro Fernandez

Publisher:

Published: 2018

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The design strategies for the next generation of low-emission combustion systems are highly focused on reducing pollutant emissions, and designers need to perform numerical simulations that incorporate detailed soot and radiative heat transfer models. In addition, most combustion devices operate under turbulent flow regimes; therefore the effects of turbulent fluctuation on soot and radiative heat transfer models need to be accounted for. A transported probability density function (PDF) method and a photon Monte Carlo/line-by-line (PMC/LBL) spectral model are exercised to generate physical insight into soot processes and spectral radiation characteristics in transient high-pressure turbulent n-dodecane spray flames, under conditions that are relevant for compression-ignition piston engines. PDF model results are compared with experimental measurements and with results from a locally well-stirred reactor (WSR) model that neglects unresolved turbulent fluctuations in composition and temperature.Computed total soot mass and soot spatial distributions are highly sensitive to the modeling of unresolved turbulent fluctuations. To achieve reasonable agreement between model and experiment and to capture the highly intermittent nature of soot in the turbulent flame, it is necessary to accurately represent mixing and the low diffusivity of soot particles. Radiant fractions and global influences of radiation in these flames are relatively small. Nevertheless, an examination of spectral radiative heat transfer provides valuable insight into the nature and modeling of radiation in high-pressure turbulent combustion systems. There are complex spectral interactions that are revealed using PMC/LBL.


Book Synopsis ADVANCED SOOT AND RADIATION MODELS FOR LAMINAR AND TURBULENT FLAMES. by : Sebastian Ferreyro Fernandez

Download or read book ADVANCED SOOT AND RADIATION MODELS FOR LAMINAR AND TURBULENT FLAMES. written by Sebastian Ferreyro Fernandez and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The design strategies for the next generation of low-emission combustion systems are highly focused on reducing pollutant emissions, and designers need to perform numerical simulations that incorporate detailed soot and radiative heat transfer models. In addition, most combustion devices operate under turbulent flow regimes; therefore the effects of turbulent fluctuation on soot and radiative heat transfer models need to be accounted for. A transported probability density function (PDF) method and a photon Monte Carlo/line-by-line (PMC/LBL) spectral model are exercised to generate physical insight into soot processes and spectral radiation characteristics in transient high-pressure turbulent n-dodecane spray flames, under conditions that are relevant for compression-ignition piston engines. PDF model results are compared with experimental measurements and with results from a locally well-stirred reactor (WSR) model that neglects unresolved turbulent fluctuations in composition and temperature.Computed total soot mass and soot spatial distributions are highly sensitive to the modeling of unresolved turbulent fluctuations. To achieve reasonable agreement between model and experiment and to capture the highly intermittent nature of soot in the turbulent flame, it is necessary to accurately represent mixing and the low diffusivity of soot particles. Radiant fractions and global influences of radiation in these flames are relatively small. Nevertheless, an examination of spectral radiative heat transfer provides valuable insight into the nature and modeling of radiation in high-pressure turbulent combustion systems. There are complex spectral interactions that are revealed using PMC/LBL.


Oxygen-Enhanced Combustion

Oxygen-Enhanced Combustion

Author: Charles E. Baukal Jr.

Publisher: CRC Press

Published: 2013-03-15

Total Pages: 779

ISBN-13: 1439862303

DOWNLOAD EBOOK

Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissi


Book Synopsis Oxygen-Enhanced Combustion by : Charles E. Baukal Jr.

Download or read book Oxygen-Enhanced Combustion written by Charles E. Baukal Jr. and published by CRC Press. This book was released on 2013-03-15 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissi


Computational Fluid Dynamics in Industrial Combustion

Computational Fluid Dynamics in Industrial Combustion

Author: Charles E. Baukal, Jr.

Publisher: CRC Press

Published: 2000-10-26

Total Pages: 650

ISBN-13: 9780849320002

DOWNLOAD EBOOK

Although many books have been written on computational fluid dynamics (CFD) and many written on combustion, most contain very limited coverage of the combination of CFD and industrial combustion. Furthermore, most of these books are written at an advanced academic level, emphasize theory over practice, and provide little help to engineers who need to use CFD for combustion modeling. Computational Fluid Dynamics in Industrial Combustion fills this gap in the literature. Focusing on topics of interest to the practicing engineer, it codifies the many relevant books, papers, and reports written on this combined subject into a single, coherent reference. It looks at each topic from a somewhat narrow perspective to see how that topic affects modeling in industrial combustion. The editor and his team of expert authors address these topics within three main sections: Modeling Techniques-The basics of CFD modeling in combustion Industrial Applications-Specific applications of CFD in the steel, aluminum, glass, gas turbine, and petrochemical industries Advanced Techniques-Subjects rarely addressed in other texts, including design optimization, simulation, and visualization Rapid increases in computing power and significant advances in commercial CFD codes have led to a tremendous increase in the application of CFD to industrial combustion. Thorough and clearly representing the techniques and issues confronted in industry, Computational Fluid Dynamics in Industrial Combustion will help bring you quickly up to date on current methods and gain the ability to set up and solve the various types of problems you will encounter.


Book Synopsis Computational Fluid Dynamics in Industrial Combustion by : Charles E. Baukal, Jr.

Download or read book Computational Fluid Dynamics in Industrial Combustion written by Charles E. Baukal, Jr. and published by CRC Press. This book was released on 2000-10-26 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many books have been written on computational fluid dynamics (CFD) and many written on combustion, most contain very limited coverage of the combination of CFD and industrial combustion. Furthermore, most of these books are written at an advanced academic level, emphasize theory over practice, and provide little help to engineers who need to use CFD for combustion modeling. Computational Fluid Dynamics in Industrial Combustion fills this gap in the literature. Focusing on topics of interest to the practicing engineer, it codifies the many relevant books, papers, and reports written on this combined subject into a single, coherent reference. It looks at each topic from a somewhat narrow perspective to see how that topic affects modeling in industrial combustion. The editor and his team of expert authors address these topics within three main sections: Modeling Techniques-The basics of CFD modeling in combustion Industrial Applications-Specific applications of CFD in the steel, aluminum, glass, gas turbine, and petrochemical industries Advanced Techniques-Subjects rarely addressed in other texts, including design optimization, simulation, and visualization Rapid increases in computing power and significant advances in commercial CFD codes have led to a tremendous increase in the application of CFD to industrial combustion. Thorough and clearly representing the techniques and issues confronted in industry, Computational Fluid Dynamics in Industrial Combustion will help bring you quickly up to date on current methods and gain the ability to set up and solve the various types of problems you will encounter.


Heat Transfer in Industrial Combustion

Heat Transfer in Industrial Combustion

Author: Jr., Charles E. Baukal

Publisher: CRC Press

Published: 2000-05-26

Total Pages: 568

ISBN-13: 142003975X

DOWNLOAD EBOOK

Industry relies heavily on the combustion process. The already high demand for energy, primarily from combustion, is expected to continue to rapidly increase. Yet, the information is scattered and incomplete, with very little attention paid to the overall combustion system. Designed for practicing engineers, Heat Transfer in Industrial Combustion e


Book Synopsis Heat Transfer in Industrial Combustion by : Jr., Charles E. Baukal

Download or read book Heat Transfer in Industrial Combustion written by Jr., Charles E. Baukal and published by CRC Press. This book was released on 2000-05-26 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Industry relies heavily on the combustion process. The already high demand for energy, primarily from combustion, is expected to continue to rapidly increase. Yet, the information is scattered and incomplete, with very little attention paid to the overall combustion system. Designed for practicing engineers, Heat Transfer in Industrial Combustion e


Industrial Combustion Pollution and Control

Industrial Combustion Pollution and Control

Author: Jr., Charles E. Baukal

Publisher: CRC Press

Published: 2003-10-15

Total Pages: 920

ISBN-13: 9780203912782

DOWNLOAD EBOOK

This reference overflows with an abundance of experimental techniques, simulation strategies, and practical applications useful in the control of pollutants generated by combustion processes in the metals, minerals, chemical, petrochemical, waste, incineration, paper, glass, and foods industries. The book assists engineers as they attempt to meet e


Book Synopsis Industrial Combustion Pollution and Control by : Jr., Charles E. Baukal

Download or read book Industrial Combustion Pollution and Control written by Jr., Charles E. Baukal and published by CRC Press. This book was released on 2003-10-15 with total page 920 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference overflows with an abundance of experimental techniques, simulation strategies, and practical applications useful in the control of pollutants generated by combustion processes in the metals, minerals, chemical, petrochemical, waste, incineration, paper, glass, and foods industries. The book assists engineers as they attempt to meet e


Industrial Combustion Testing

Industrial Combustion Testing

Author: Jr., Charles E. Baukal

Publisher: CRC Press

Published: 2010-07-29

Total Pages: 777

ISBN-13: 1420085298

DOWNLOAD EBOOK

Until now, anyone conducting industrial combustion tests had to either rely on old methods, go scurrying through the literature to find proven applicable methodologies, or hire top-shelf consultants such as those that work for cutting-edge companies like John Zink. Manufacturers can no longer take industrial combustion for granted. Air and noise po


Book Synopsis Industrial Combustion Testing by : Jr., Charles E. Baukal

Download or read book Industrial Combustion Testing written by Jr., Charles E. Baukal and published by CRC Press. This book was released on 2010-07-29 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until now, anyone conducting industrial combustion tests had to either rely on old methods, go scurrying through the literature to find proven applicable methodologies, or hire top-shelf consultants such as those that work for cutting-edge companies like John Zink. Manufacturers can no longer take industrial combustion for granted. Air and noise po