3D Printing for Tissue Engineering and Regenerative Medicine

3D Printing for Tissue Engineering and Regenerative Medicine

Author: Murat Guvendiren

Publisher: MDPI

Published: 2020-12-02

Total Pages: 166

ISBN-13: 3039361120

DOWNLOAD EBOOK

Three-dimensional (3D) printing enables the fabrication of tissue-engineered constructs and devices from a patient’s own medical data, leading to the creation of anatomically matched and patient-specific constructs. There is a growing interest in applying 3D printing technologies in the fields of tissue engineering and regenerative medicine. The main printing methods include extrusion-based, vat photopolymerization, droplet-based, and powder-based printing. A variety of materials have been used for printing, from metal alloys and ceramics to polymers and elastomers as well as from hydrogels to extracellular matrix proteins. More recently, bioprinting, a subcategory of 3D printing, has enabled the precise assembly of cell-laden biomaterials (i.e., bioinks) for the construction of complex 3D functional living tissues or artificial organs. In this Special Issue, we aim to capture state-of-the-art research papers and the most current review papers focusing on 3D printing for tissue engineering and regenerative medicine. In particular, we seek novel studies on the development of 3D printing and bioprinting approaches, developing printable materials (inks and bioinks), and utilizing 3D-printed scaffolds for tissue engineering and regenerative medicine applications. These applications are not limited to but include scaffolds for in vivo tissue regeneration and tissue analogues for in vitro disease modeling and/or drug screening.


Book Synopsis 3D Printing for Tissue Engineering and Regenerative Medicine by : Murat Guvendiren

Download or read book 3D Printing for Tissue Engineering and Regenerative Medicine written by Murat Guvendiren and published by MDPI. This book was released on 2020-12-02 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-dimensional (3D) printing enables the fabrication of tissue-engineered constructs and devices from a patient’s own medical data, leading to the creation of anatomically matched and patient-specific constructs. There is a growing interest in applying 3D printing technologies in the fields of tissue engineering and regenerative medicine. The main printing methods include extrusion-based, vat photopolymerization, droplet-based, and powder-based printing. A variety of materials have been used for printing, from metal alloys and ceramics to polymers and elastomers as well as from hydrogels to extracellular matrix proteins. More recently, bioprinting, a subcategory of 3D printing, has enabled the precise assembly of cell-laden biomaterials (i.e., bioinks) for the construction of complex 3D functional living tissues or artificial organs. In this Special Issue, we aim to capture state-of-the-art research papers and the most current review papers focusing on 3D printing for tissue engineering and regenerative medicine. In particular, we seek novel studies on the development of 3D printing and bioprinting approaches, developing printable materials (inks and bioinks), and utilizing 3D-printed scaffolds for tissue engineering and regenerative medicine applications. These applications are not limited to but include scaffolds for in vivo tissue regeneration and tissue analogues for in vitro disease modeling and/or drug screening.


3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine

3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine

Author: Lijie Grace Zhang

Publisher: Academic Press

Published: 2022-02-18

Total Pages: 563

ISBN-13: 0128245530

DOWNLOAD EBOOK

3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine, Second Edition provides an in-depth introduction to bioprinting and nanotechnology and their industrial applications. Sections cover 4D Printing Smart Multi-responsive Structure, Cells for Bioprinting, 4D Printing Biomaterials, 3D/4D printing functional biomedical devices, 3D Printing for Cardiac and Heart Regeneration, Integrating 3D printing with Ultrasound for Musculoskeletal Regeneration, 3D Printing for Liver Regeneration, 3D Printing for Cancer Studies, 4D Printing Soft Bio-robots, Clinical Translation and Future Directions. The book's team of expert contributors have pooled their expertise in order to provide a summary of the suitability, sustainability and limitations of each technique for each specific application. The increasing availability and decreasing costs of nanotechnologies and 3D printing technologies are driving their use to meet medical needs. This book provides an overview of these technologies and their integration. Includes clinical applications, regulatory hurdles, and a risk-benefit analysis of each technology Assists readers in selecting the best materials and how to identify the right parameters for printing Includes the advantages of integrating 3D printing and nanotechnology in order to improve the safety of nano-scale materials for biomedical applications


Book Synopsis 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine by : Lijie Grace Zhang

Download or read book 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine written by Lijie Grace Zhang and published by Academic Press. This book was released on 2022-02-18 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine, Second Edition provides an in-depth introduction to bioprinting and nanotechnology and their industrial applications. Sections cover 4D Printing Smart Multi-responsive Structure, Cells for Bioprinting, 4D Printing Biomaterials, 3D/4D printing functional biomedical devices, 3D Printing for Cardiac and Heart Regeneration, Integrating 3D printing with Ultrasound for Musculoskeletal Regeneration, 3D Printing for Liver Regeneration, 3D Printing for Cancer Studies, 4D Printing Soft Bio-robots, Clinical Translation and Future Directions. The book's team of expert contributors have pooled their expertise in order to provide a summary of the suitability, sustainability and limitations of each technique for each specific application. The increasing availability and decreasing costs of nanotechnologies and 3D printing technologies are driving their use to meet medical needs. This book provides an overview of these technologies and their integration. Includes clinical applications, regulatory hurdles, and a risk-benefit analysis of each technology Assists readers in selecting the best materials and how to identify the right parameters for printing Includes the advantages of integrating 3D printing and nanotechnology in order to improve the safety of nano-scale materials for biomedical applications


3D Printing for Tissue Engineering and Regenerative Medicine

3D Printing for Tissue Engineering and Regenerative Medicine

Author: Murat Guvendiren

Publisher:

Published: 2020

Total Pages: 166

ISBN-13: 9783039361137

DOWNLOAD EBOOK

Three-dimensional (3D) printing enables the fabrication of tissue-engineered constructs and devices from a patient's own medical data, leading to the creation of anatomically matched and patient-specific constructs. There is a growing interest in applying 3D printing technologies in the fields of tissue engineering and regenerative medicine. The main printing methods include extrusion-based, vat photopolymerization, droplet-based, and powder-based printing. A variety of materials have been used for printing, from metal alloys and ceramics to polymers and elastomers as well as from hydrogels to extracellular matrix proteins. More recently, bioprinting, a subcategory of 3D printing, has enabled the precise assembly of cell-laden biomaterials (i.e., bioinks) for the construction of complex 3D functional living tissues or artificial organs. In this Special Issue, we aim to capture state-of-the-art research papers and the most current review papers focusing on 3D printing for tissue engineering and regenerative medicine. In particular, we seek novel studies on the development of 3D printing and bioprinting approaches, developing printable materials (inks and bioinks), and utilizing 3D-printed scaffolds for tissue engineering and regenerative medicine applications. These applications are not limited to but include scaffolds for in vivo tissue regeneration and tissue analogues for in vitro disease modeling and/or drug screening.


Book Synopsis 3D Printing for Tissue Engineering and Regenerative Medicine by : Murat Guvendiren

Download or read book 3D Printing for Tissue Engineering and Regenerative Medicine written by Murat Guvendiren and published by . This book was released on 2020 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-dimensional (3D) printing enables the fabrication of tissue-engineered constructs and devices from a patient's own medical data, leading to the creation of anatomically matched and patient-specific constructs. There is a growing interest in applying 3D printing technologies in the fields of tissue engineering and regenerative medicine. The main printing methods include extrusion-based, vat photopolymerization, droplet-based, and powder-based printing. A variety of materials have been used for printing, from metal alloys and ceramics to polymers and elastomers as well as from hydrogels to extracellular matrix proteins. More recently, bioprinting, a subcategory of 3D printing, has enabled the precise assembly of cell-laden biomaterials (i.e., bioinks) for the construction of complex 3D functional living tissues or artificial organs. In this Special Issue, we aim to capture state-of-the-art research papers and the most current review papers focusing on 3D printing for tissue engineering and regenerative medicine. In particular, we seek novel studies on the development of 3D printing and bioprinting approaches, developing printable materials (inks and bioinks), and utilizing 3D-printed scaffolds for tissue engineering and regenerative medicine applications. These applications are not limited to but include scaffolds for in vivo tissue regeneration and tissue analogues for in vitro disease modeling and/or drug screening.


3D Bioprinting in Regenerative Engineering

3D Bioprinting in Regenerative Engineering

Author: Ali Khademhosseini

Publisher: CRC Press

Published: 2018-04-17

Total Pages: 300

ISBN-13: 1315280477

DOWNLOAD EBOOK

Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures. Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text: Presents the principles and applications of bioprinting Discusses bioinks for 3D printing Explores applications of extrusion bioprinting, including past, present, and future challenges Includes discussion on 4D Bioprinting in terms of mechanisms and applications


Book Synopsis 3D Bioprinting in Regenerative Engineering by : Ali Khademhosseini

Download or read book 3D Bioprinting in Regenerative Engineering written by Ali Khademhosseini and published by CRC Press. This book was released on 2018-04-17 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures. Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text: Presents the principles and applications of bioprinting Discusses bioinks for 3D printing Explores applications of extrusion bioprinting, including past, present, and future challenges Includes discussion on 4D Bioprinting in terms of mechanisms and applications


3D Bioprinting in Regenerative Engineering

3D Bioprinting in Regenerative Engineering

Author: Ali Khademhosseini

Publisher: CRC Press

Published: 2018-04-17

Total Pages: 385

ISBN-13: 1315280485

DOWNLOAD EBOOK

Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures. Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text: Presents the principles and applications of bioprinting Discusses bioinks for 3D printing Explores applications of extrusion bioprinting, including past, present, and future challenges Includes discussion on 4D Bioprinting in terms of mechanisms and applications


Book Synopsis 3D Bioprinting in Regenerative Engineering by : Ali Khademhosseini

Download or read book 3D Bioprinting in Regenerative Engineering written by Ali Khademhosseini and published by CRC Press. This book was released on 2018-04-17 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures. Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text: Presents the principles and applications of bioprinting Discusses bioinks for 3D printing Explores applications of extrusion bioprinting, including past, present, and future challenges Includes discussion on 4D Bioprinting in terms of mechanisms and applications


Essentials of 3D Biofabrication and Translation

Essentials of 3D Biofabrication and Translation

Author: Anthony Atala

Publisher: Academic Press

Published: 2015-07-17

Total Pages: 441

ISBN-13: 0128010150

DOWNLOAD EBOOK

Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. Provides a new and versatile method to fabricating living tissue Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction Describes current approaches and future challenges for translational science Runs the gamut of topics related to the subject, from hydrogels and polymers to nanotechnology, toxicity testing, and drug screening platforms


Book Synopsis Essentials of 3D Biofabrication and Translation by : Anthony Atala

Download or read book Essentials of 3D Biofabrication and Translation written by Anthony Atala and published by Academic Press. This book was released on 2015-07-17 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. Provides a new and versatile method to fabricating living tissue Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction Describes current approaches and future challenges for translational science Runs the gamut of topics related to the subject, from hydrogels and polymers to nanotechnology, toxicity testing, and drug screening platforms


3D Printing and Biofabrication

3D Printing and Biofabrication

Author: Aleksandr Ovsianikov

Publisher: Springer

Published: 2018-06-08

Total Pages: 0

ISBN-13: 9783319454436

DOWNLOAD EBOOK

This volume provides an in-depth introduction to 3D printing and biofabrication and covers the recent advances in additive manufacturing for tissue engineering. The book is divided into two parts, the first part on 3D printing discusses conventional approaches in additive manufacturing aimed at fabrication of structures, which are seeded with cells in a subsequent step. The second part on biofabrication presents processes which integrate living cells into the fabrication process.


Book Synopsis 3D Printing and Biofabrication by : Aleksandr Ovsianikov

Download or read book 3D Printing and Biofabrication written by Aleksandr Ovsianikov and published by Springer. This book was released on 2018-06-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an in-depth introduction to 3D printing and biofabrication and covers the recent advances in additive manufacturing for tissue engineering. The book is divided into two parts, the first part on 3D printing discusses conventional approaches in additive manufacturing aimed at fabrication of structures, which are seeded with cells in a subsequent step. The second part on biofabrication presents processes which integrate living cells into the fabrication process.


Applications of 3D printing in Biomedical Engineering

Applications of 3D printing in Biomedical Engineering

Author: Neeta Raj Sharma

Publisher: Springer Nature

Published: 2021-04-21

Total Pages: 216

ISBN-13: 9813368888

DOWNLOAD EBOOK

This book focuses on applications of three-dimensional (3D) printing in healthcare. It first describes a range of biomaterials, including their physicochemical and biological properties. It then reviews the current state of the art in bioprinting techniques and the potential application of bioprinting, computer-aided additive manufacturing of cells, tissues, and scaffolds to create organs in regenerative medicine. Further, it discusses the orthopedic applications of 3D printing in the design and fabrication of dental implants, and the use of 3D bioprinting in oral and maxillofacial surgery and in tissue and organ engineering. Lastly, the book examines the 3D printing technologies that are used for the fabrication of the drug delivery system. It also explores the current challenges and the future of 3D bioprinting in medical sciences, as well as the market demand.


Book Synopsis Applications of 3D printing in Biomedical Engineering by : Neeta Raj Sharma

Download or read book Applications of 3D printing in Biomedical Engineering written by Neeta Raj Sharma and published by Springer Nature. This book was released on 2021-04-21 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on applications of three-dimensional (3D) printing in healthcare. It first describes a range of biomaterials, including their physicochemical and biological properties. It then reviews the current state of the art in bioprinting techniques and the potential application of bioprinting, computer-aided additive manufacturing of cells, tissues, and scaffolds to create organs in regenerative medicine. Further, it discusses the orthopedic applications of 3D printing in the design and fabrication of dental implants, and the use of 3D bioprinting in oral and maxillofacial surgery and in tissue and organ engineering. Lastly, the book examines the 3D printing technologies that are used for the fabrication of the drug delivery system. It also explores the current challenges and the future of 3D bioprinting in medical sciences, as well as the market demand.


Bioinspired Biomaterials

Bioinspired Biomaterials

Author: Heung Jae Chun

Publisher: Springer Nature

Published: 2020-06-29

Total Pages: 231

ISBN-13: 9811532583

DOWNLOAD EBOOK

This book is the first of two volumes that together offer a comprehensive account of cutting-edge advances in the development of biomaterials for use within tissue engineering and regenerative medicine. Topics addressed in this volume, which is devoted to bioinspired biomaterials, range from novel biomaterials for regenerative medicine through to emerging enabling technologies with applications in, for example, drug delivery, maternal–fetal medicine, peripheral nerve repair and regeneration, and brain tumor therapy. New bioinspired hydrogels receive detailed attention in the book, and a further focus is the use of bioinspired biomaterials in the regulation of stem cell fate. Here the coverage includes the role of scaffolds in cartilage regeneration, the bioapplication of inorganic nanomaterials in tissue engineering, and guidance of cell migration to improve tissue regeneration. The authors are recognized experts in the interdisciplinary field of regenerative medicine and the book will be of value for all with an interest in regenerative medicine based on biomaterials.


Book Synopsis Bioinspired Biomaterials by : Heung Jae Chun

Download or read book Bioinspired Biomaterials written by Heung Jae Chun and published by Springer Nature. This book was released on 2020-06-29 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first of two volumes that together offer a comprehensive account of cutting-edge advances in the development of biomaterials for use within tissue engineering and regenerative medicine. Topics addressed in this volume, which is devoted to bioinspired biomaterials, range from novel biomaterials for regenerative medicine through to emerging enabling technologies with applications in, for example, drug delivery, maternal–fetal medicine, peripheral nerve repair and regeneration, and brain tumor therapy. New bioinspired hydrogels receive detailed attention in the book, and a further focus is the use of bioinspired biomaterials in the regulation of stem cell fate. Here the coverage includes the role of scaffolds in cartilage regeneration, the bioapplication of inorganic nanomaterials in tissue engineering, and guidance of cell migration to improve tissue regeneration. The authors are recognized experts in the interdisciplinary field of regenerative medicine and the book will be of value for all with an interest in regenerative medicine based on biomaterials.


3D Bioprinting for Reconstructive Surgery

3D Bioprinting for Reconstructive Surgery

Author: Daniel Thomas

Publisher: Woodhead Publishing

Published: 2017-11-14

Total Pages: 450

ISBN-13: 0081012160

DOWNLOAD EBOOK

3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. Discusses new possibilities in tissue engineering with 3D printing Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues Reviews emerging technologies in addition to commercial techniques


Book Synopsis 3D Bioprinting for Reconstructive Surgery by : Daniel Thomas

Download or read book 3D Bioprinting for Reconstructive Surgery written by Daniel Thomas and published by Woodhead Publishing. This book was released on 2017-11-14 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. Discusses new possibilities in tissue engineering with 3D printing Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues Reviews emerging technologies in addition to commercial techniques