A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations

A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations

Author: Marc Alexander Schweitzer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 197

ISBN-13: 3642593259

DOWNLOAD EBOOK

the solution or its gradient. These new discretization techniques are promising approaches to overcome the severe problem of mesh-generation. Furthermore, the easy coupling of meshfree discretizations of continuous phenomena to dis crete particle models and the straightforward Lagrangian treatment of PDEs via these techniques make them very interesting from a practical as well as a theoretical point of view. Generally speaking, there are two different types of meshfree approaches; first, the classical particle methods [104, 105, 107, 108] and second, meshfree discretizations based on data fitting techniques [13, 39]. Traditional parti cle methods stem from physics applications like Boltzmann equations [3, 50] and are also of great interest in the mathematical modeling community since many applications nowadays require the use of molecular and atomistic mod els (for instance in semi-conductor design). Note however that these methods are Lagrangian methods; i. e. , they are based On a time-dependent formulation or conservation law and can be applied only within this context. In a particle method we use a discrete set of points to discretize the domain of interest and the solution at a certain time. The PDE is then transformed into equa tions of motion for the discrete particles such that the particles can be moved via these equations. After time discretization of the equations of motion we obtain a certain particle distribution for every time step.


Book Synopsis A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations by : Marc Alexander Schweitzer

Download or read book A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations written by Marc Alexander Schweitzer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: the solution or its gradient. These new discretization techniques are promising approaches to overcome the severe problem of mesh-generation. Furthermore, the easy coupling of meshfree discretizations of continuous phenomena to dis crete particle models and the straightforward Lagrangian treatment of PDEs via these techniques make them very interesting from a practical as well as a theoretical point of view. Generally speaking, there are two different types of meshfree approaches; first, the classical particle methods [104, 105, 107, 108] and second, meshfree discretizations based on data fitting techniques [13, 39]. Traditional parti cle methods stem from physics applications like Boltzmann equations [3, 50] and are also of great interest in the mathematical modeling community since many applications nowadays require the use of molecular and atomistic mod els (for instance in semi-conductor design). Note however that these methods are Lagrangian methods; i. e. , they are based On a time-dependent formulation or conservation law and can be applied only within this context. In a particle method we use a discrete set of points to discretize the domain of interest and the solution at a certain time. The PDE is then transformed into equa tions of motion for the discrete particles such that the particles can be moved via these equations. After time discretization of the equations of motion we obtain a certain particle distribution for every time step.


Parallel Computational Fluid Dynamics 2008

Parallel Computational Fluid Dynamics 2008

Author: Damien Tromeur-Dervout

Publisher: Springer Science & Business Media

Published: 2010-09-21

Total Pages: 428

ISBN-13: 3642144381

DOWNLOAD EBOOK

This book collects the proceedings of the Parallel Computational Fluid Dynamics 2008 conference held in Lyon, France. Contributed papers by over 40 researchers representing the state of the art in parallel CFD and architecture from Asia, Europe, and North America examine major developments in (1) block-structured grid and boundary methods to simulate flows over moving bodies, (2) specific methods for optimization in Aerodynamics Design, (3) innovative parallel algorithms and numerical solvers, such as scalable algebraic multilevel preconditioners and the acceleration of iterative solutions, (4) software frameworks and component architectures for parallelism, (5) large scale computing and parallel efficiencies in the industrial context, (6) lattice Boltzmann and SPH methods, and (7) applications in the environment, biofluids, and nuclear engineering.


Book Synopsis Parallel Computational Fluid Dynamics 2008 by : Damien Tromeur-Dervout

Download or read book Parallel Computational Fluid Dynamics 2008 written by Damien Tromeur-Dervout and published by Springer Science & Business Media. This book was released on 2010-09-21 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects the proceedings of the Parallel Computational Fluid Dynamics 2008 conference held in Lyon, France. Contributed papers by over 40 researchers representing the state of the art in parallel CFD and architecture from Asia, Europe, and North America examine major developments in (1) block-structured grid and boundary methods to simulate flows over moving bodies, (2) specific methods for optimization in Aerodynamics Design, (3) innovative parallel algorithms and numerical solvers, such as scalable algebraic multilevel preconditioners and the acceleration of iterative solutions, (4) software frameworks and component architectures for parallelism, (5) large scale computing and parallel efficiencies in the industrial context, (6) lattice Boltzmann and SPH methods, and (7) applications in the environment, biofluids, and nuclear engineering.


Programming for Computations - Python

Programming for Computations - Python

Author: Svein Linge

Publisher: Springer

Published: 2016-07-25

Total Pages: 244

ISBN-13: 3319324284

DOWNLOAD EBOOK

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.


Book Synopsis Programming for Computations - Python by : Svein Linge

Download or read book Programming for Computations - Python written by Svein Linge and published by Springer. This book was released on 2016-07-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.


A Primer on Scientific Programming with Python

A Primer on Scientific Programming with Python

Author: Hans Petter Langtangen

Publisher: Springer

Published: 2016-07-28

Total Pages: 942

ISBN-13: 3662498871

DOWNLOAD EBOOK

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015


Book Synopsis A Primer on Scientific Programming with Python by : Hans Petter Langtangen

Download or read book A Primer on Scientific Programming with Python written by Hans Petter Langtangen and published by Springer. This book was released on 2016-07-28 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015


Programming for Computations - MATLAB/Octave

Programming for Computations - MATLAB/Octave

Author: Svein Linge

Publisher: Springer

Published: 2016-08-01

Total Pages: 228

ISBN-13: 3319324527

DOWNLOAD EBOOK

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.


Book Synopsis Programming for Computations - MATLAB/Octave by : Svein Linge

Download or read book Programming for Computations - MATLAB/Octave written by Svein Linge and published by Springer. This book was released on 2016-08-01 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.


Optimization with PDE Constraints

Optimization with PDE Constraints

Author: Ronald Hoppe

Publisher: Springer

Published: 2014-09-11

Total Pages: 422

ISBN-13: 3319080253

DOWNLOAD EBOOK

This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).


Book Synopsis Optimization with PDE Constraints by : Ronald Hoppe

Download or read book Optimization with PDE Constraints written by Ronald Hoppe and published by Springer. This book was released on 2014-09-11 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).


High Order Nonlinear Numerical Schemes for Evolutionary PDEs

High Order Nonlinear Numerical Schemes for Evolutionary PDEs

Author: Rémi Abgrall

Publisher: Springer

Published: 2014-05-19

Total Pages: 220

ISBN-13: 3319054554

DOWNLOAD EBOOK

This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.


Book Synopsis High Order Nonlinear Numerical Schemes for Evolutionary PDEs by : Rémi Abgrall

Download or read book High Order Nonlinear Numerical Schemes for Evolutionary PDEs written by Rémi Abgrall and published by Springer. This book was released on 2014-05-19 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.


Meshfree Methods for Partial Differential Equations IV

Meshfree Methods for Partial Differential Equations IV

Author: Michael Griebel

Publisher: Springer Science & Business Media

Published: 2008-10-16

Total Pages: 404

ISBN-13: 354079994X

DOWNLOAD EBOOK

The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is a active research field both in the mathematics and engineering community. This volume of LNCSE is a collection of the proceedings papers of the Fourth International Workshop on Meshfree Methods held in September 2007 in Bonn.


Book Synopsis Meshfree Methods for Partial Differential Equations IV by : Michael Griebel

Download or read book Meshfree Methods for Partial Differential Equations IV written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2008-10-16 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is a active research field both in the mathematics and engineering community. This volume of LNCSE is a collection of the proceedings papers of the Fourth International Workshop on Meshfree Methods held in September 2007 in Bonn.


Recent Trends in Computational Engineering - CE2014

Recent Trends in Computational Engineering - CE2014

Author: Miriam Mehl

Publisher: Springer

Published: 2015-10-12

Total Pages: 324

ISBN-13: 3319229974

DOWNLOAD EBOOK

This book presents selected papers from the 3rd International Workshop on Computational Engineering held in Stuttgart from October 6 to 10, 2014, bringing together innovative contributions from related fields with computer science and mathematics as an important technical basis among others. The workshop discussed the state of the art and the further evolution of numerical techniques for simulation in engineering and science. We focus on current trends in numerical simulation in science and engineering, new requirements arising from rapidly increasing parallelism in computer architectures, and novel mathematical approaches. Accordingly, the chapters of the book particularly focus on parallel algorithms and performance optimization, coupled systems, and complex applications and optimization.


Book Synopsis Recent Trends in Computational Engineering - CE2014 by : Miriam Mehl

Download or read book Recent Trends in Computational Engineering - CE2014 written by Miriam Mehl and published by Springer. This book was released on 2015-10-12 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers from the 3rd International Workshop on Computational Engineering held in Stuttgart from October 6 to 10, 2014, bringing together innovative contributions from related fields with computer science and mathematics as an important technical basis among others. The workshop discussed the state of the art and the further evolution of numerical techniques for simulation in engineering and science. We focus on current trends in numerical simulation in science and engineering, new requirements arising from rapidly increasing parallelism in computer architectures, and novel mathematical approaches. Accordingly, the chapters of the book particularly focus on parallel algorithms and performance optimization, coupled systems, and complex applications and optimization.


Multi-Band Effective Mass Approximations

Multi-Band Effective Mass Approximations

Author: Matthias Ehrhardt

Publisher: Springer

Published: 2014-07-17

Total Pages: 337

ISBN-13: 3319014277

DOWNLOAD EBOOK

This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used with upscaling methods to deliver parameters needed in semi-classical models for semiconductor devices, such as quantum well lasers. This book covers in detail all these three aspects using a variety of illustrative examples. Readers will gain detailed insights into the status of the multiband effective mass method for semiconductor nano structures. Both users of the kp method as well as advanced researchers who want to advance the kp method further will find helpful information on how to best work with this method and use it as a tool for characterizing the physical properties of semiconductor nano structures. The book is primarily intended for graduate and Ph.D. students in applied mathematics, mathematical physics and theoretical physics, as well as all those working in quantum mechanical research or the semiconductor / opto-electronic industry who are interested in new mathematical aspects.


Book Synopsis Multi-Band Effective Mass Approximations by : Matthias Ehrhardt

Download or read book Multi-Band Effective Mass Approximations written by Matthias Ehrhardt and published by Springer. This book was released on 2014-07-17 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used with upscaling methods to deliver parameters needed in semi-classical models for semiconductor devices, such as quantum well lasers. This book covers in detail all these three aspects using a variety of illustrative examples. Readers will gain detailed insights into the status of the multiband effective mass method for semiconductor nano structures. Both users of the kp method as well as advanced researchers who want to advance the kp method further will find helpful information on how to best work with this method and use it as a tool for characterizing the physical properties of semiconductor nano structures. The book is primarily intended for graduate and Ph.D. students in applied mathematics, mathematical physics and theoretical physics, as well as all those working in quantum mechanical research or the semiconductor / opto-electronic industry who are interested in new mathematical aspects.