A Quasi-dimensional Charge Motion and Turbulence Model for Combustion and Emissions Prediction in Diesel Engines with a fully Variable Valve Train

A Quasi-dimensional Charge Motion and Turbulence Model for Combustion and Emissions Prediction in Diesel Engines with a fully Variable Valve Train

Author: Qirui Yang

Publisher: Springer Nature

Published: 2021-10-01

Total Pages: 141

ISBN-13: 3658357746

DOWNLOAD EBOOK

Qirui Yang develops a model chain for the simulation of combustion and emissions of diesel engine with fully variable valve train (VVT) based on extensive 3D-CFD simulations, and experimental measurements on the engine test bench. The focus of the work is the development of a quasi-dimensional (QDM) flow model, which sets up a series of sub-models to describe phenomenologically the swirl, squish and axial charge motions as well as the shear-related turbulence production and dissipation. The QDM flow model is coupled with a QDM combustion model and a nitrogen oxides (NOx) / soot emission model. With the established model chain, VVT operating strategies of diesel engine can be developed and optimized as part of the simulation for specific engine performance parameters and the lowest NOx and soot emissions.


Book Synopsis A Quasi-dimensional Charge Motion and Turbulence Model for Combustion and Emissions Prediction in Diesel Engines with a fully Variable Valve Train by : Qirui Yang

Download or read book A Quasi-dimensional Charge Motion and Turbulence Model for Combustion and Emissions Prediction in Diesel Engines with a fully Variable Valve Train written by Qirui Yang and published by Springer Nature. This book was released on 2021-10-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Qirui Yang develops a model chain for the simulation of combustion and emissions of diesel engine with fully variable valve train (VVT) based on extensive 3D-CFD simulations, and experimental measurements on the engine test bench. The focus of the work is the development of a quasi-dimensional (QDM) flow model, which sets up a series of sub-models to describe phenomenologically the swirl, squish and axial charge motions as well as the shear-related turbulence production and dissipation. The QDM flow model is coupled with a QDM combustion model and a nitrogen oxides (NOx) / soot emission model. With the established model chain, VVT operating strategies of diesel engine can be developed and optimized as part of the simulation for specific engine performance parameters and the lowest NOx and soot emissions.


1D and Multi-D Modeling Techniques for IC Engine Simulation

1D and Multi-D Modeling Techniques for IC Engine Simulation

Author: Angelo Onorati

Publisher: SAE International

Published: 2020-04-06

Total Pages: 552

ISBN-13: 0768099528

DOWNLOAD EBOOK

1D and Multi-D Modeling Techniques for IC Engine Simulation provides a description of the most significant and recent achievements in the field of 1D engine simulation models and coupled 1D-3D modeling techniques, including 0D combustion models, quasi-3D methods and some 3D model applications.


Book Synopsis 1D and Multi-D Modeling Techniques for IC Engine Simulation by : Angelo Onorati

Download or read book 1D and Multi-D Modeling Techniques for IC Engine Simulation written by Angelo Onorati and published by SAE International. This book was released on 2020-04-06 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1D and Multi-D Modeling Techniques for IC Engine Simulation provides a description of the most significant and recent achievements in the field of 1D engine simulation models and coupled 1D-3D modeling techniques, including 0D combustion models, quasi-3D methods and some 3D model applications.


Modelling Diesel Combustion

Modelling Diesel Combustion

Author: P. A. Lakshminarayanan

Publisher: Springer Nature

Published: 2022-01-21

Total Pages: 419

ISBN-13: 981166742X

DOWNLOAD EBOOK

This book comprehensively discusses diesel combustion phenomena like ignition delay, fuel-air mixing, rate of heat release, and emissions of smoke, particulate and nitric oxide. It enables quantitative evaluation of these important phenomena and parameters. Most importantly, it attempts to model them with constants that are independent of engine types and hence they could be applied by the engineers and researchers for a general engine. This book emphasizes the importance of the spray at the wall in precisely describing the heat release and emissions for most of the engines on and off-road. It gives models for heat release and emissions. Every model is thoroughly validated by detailed experiments using a broad range of engines. The book describes an elegant quasi-one-dimensional model for heat release in diesel engines with single as well as multiple injections. The book describes how the two aspects, namely, fuel injection rate and the diameter of the combustion bowl in the piston, have enabled meeting advanced emission, noise, and performance standards. The book also discusses the topics of computational fluid dynamics encompassing RANS and LES models of turbulence. Given the contents, this book will be useful for students, researchers and professionals working in the area of vehicle engineering and engine technology. This book will also be a good professional book for practising engineers in the field of combustion engines and automotive engineering.


Book Synopsis Modelling Diesel Combustion by : P. A. Lakshminarayanan

Download or read book Modelling Diesel Combustion written by P. A. Lakshminarayanan and published by Springer Nature. This book was released on 2022-01-21 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively discusses diesel combustion phenomena like ignition delay, fuel-air mixing, rate of heat release, and emissions of smoke, particulate and nitric oxide. It enables quantitative evaluation of these important phenomena and parameters. Most importantly, it attempts to model them with constants that are independent of engine types and hence they could be applied by the engineers and researchers for a general engine. This book emphasizes the importance of the spray at the wall in precisely describing the heat release and emissions for most of the engines on and off-road. It gives models for heat release and emissions. Every model is thoroughly validated by detailed experiments using a broad range of engines. The book describes an elegant quasi-one-dimensional model for heat release in diesel engines with single as well as multiple injections. The book describes how the two aspects, namely, fuel injection rate and the diameter of the combustion bowl in the piston, have enabled meeting advanced emission, noise, and performance standards. The book also discusses the topics of computational fluid dynamics encompassing RANS and LES models of turbulence. Given the contents, this book will be useful for students, researchers and professionals working in the area of vehicle engineering and engine technology. This book will also be a good professional book for practising engineers in the field of combustion engines and automotive engineering.


Hybrid Turbulence Simulation to Predict Cyclic Variations

Hybrid Turbulence Simulation to Predict Cyclic Variations

Author: Volker Sohm

Publisher: Cuvillier Verlag

Published: 2007-07-06

Total Pages: 186

ISBN-13: 3736922809

DOWNLOAD EBOOK

Since the first passenger car with internal combustion (IC) engine was developed over 120 years ago, the device has been significantly improved regarding efficiency, emissions, smoothness and ease of use. Today IC-engines are used in roughly 850 million passenger cars worldwide. Even though many other concepts as e.g. fuel cells are investigated, it seems that no system can replace IC-engines in the near and intermediate future. Two different combustion concepts are considered to have the potential to full fill future requirements with respect to fuel consumption and emission standards: turbo-charged diesel and stratified spark ignition (SI) engines with high pressure direct injection (DI) systems. Both systems can operate with overall lean air/fuel mixtures. The first DISI-engine in a passenger car used a homogeneous air/fuel mixture. It was implemented in 1951 in the models Gutbrod Superior and Goliath GP 700 leading to a significant reduction in fuel consumption. The first application in mass production of direct injection systems in SI-engines was in 1997 in the Mitsubishi Carisma GDI (gasoline direct injection). The greatest issues of stratified DISI-engines today, which give a much higher potential in fuel consumption economy compared to the homogeneous combustion concept, are combustion stability and emissions. Cycle-to-cycle variations of the gas motion have been identified to play a key role in the further optimization of the device since they have a great impact on the combustion process. Engine parameters are set according to the behavior of the mean cycle. However, the extreme engine cycles, cycles of greatest and slowest burning rates, determine the operating range of the engine. Consequently, the optimal spark timing, equivalence ratio and compression ratio are a compromise. A critical issue in stratified DISI-engines is that cyclic variations are substantial to the combustibility of the air/fuel mixture at the time of the discharge of the spark plug leading to partial burning or even misfire, which is undesirable in terms of engine roughness, efficiency and unburned hydrocarbon emissions. Computational fluid dynamics (CFD) with common Reynolds averaged Naviers-Stokes (RANS) turbulence modeling has been established to be a very efficient and reliable tool within the design process of IC-engines. I. e. optimization of engine geometries can be accomplished with a short turnaround time. Additionally, insights into various physical processes can be gained that are difficult to study experimentally. However, this approach is limited by definition if unsteady features such as cycle-to-cycle variations are investigated and cannot capture this kind of phenomenon. On the other hand, large eddy simulation (LES) provides the ability to predict cyclic variations because smaller spatial scales and temporal fluctuations are resolved. Since in LES a significantly smaller range of turbulent length scales needs to be modeled compared to the RANS approach, the accuracy of LES is superior to RANS. However, resolving smaller temporal and spatial scales requires higher order numerical schemes, smaller time steps and higher resolutions of the computational grids. This can lead to a significant increase of CPU time compared to RANS. For wall-bounded turbulent flows at high Reynolds number and in complex geometries hybrid RANS/LES approaches have become more and more popular in the recent years. They combine attractive features of both methods. These methods provide the opportunity to use LES in regions, where its performance is known to be essentially superior to RANS. In other regions, where the accuracy and the averaged information on turbulent properties is sufficient, RANS can be used in order to save CPU-time. In contrast to pure RANS temporal fluctuations can be resolved in the LES regions in hybrid methods giving these approaches the potential to predict cycle-to-cycle variations or other turbulent flows of highly unsteady nature. The present work focuses on unsteady turbulent flow phenomena in IC-engines such as cyclic variations of the gas motion and investigates the ability of subgrid turbulence modeling to predict those. In Chapter 2 the basic physical principles of fluid dynamics and turbulent flows are described both phenomenologically and based on the underlying governing equations. Furthermore, a review of filtering operations applied to the Navier Stokes equations and state of the art turbulence modeling is given. The different methods as well as the corresponding specific treatment of the boundary conditions of conventional RANS simulation and LES are presented and the hybrid RANS/LES method is introduced. The numerical requirements for the hybrid approach in terms of spatial and temporal schemes as well as the meshing method that is needed for the computation of flows in complex geometries with moving boundaries as in IC-engines are described in Chapter 3. Different numerical schemes of the CFD code CFX, which is used in this work, are evaluated and tested against the numerics of other commercial and academic codes. In Chapter 4 the hybrid method is tested against measurements and data of direct numerical simulation (DNS) for simple flow cases. For a fundamental evaluation of the approach classic turbulence test cases such as the decay of homogeneous isotropic turbulence and the flow past a backward-facing step are used. The most relevant flow configurations in engine development are the steady flow through an intake port/valve assembly and the transient flow in a reciprocating engine. However, before the hybrid method is applied to these complex turbulent flows in IC engines at high Reynolds number, simplified configurations of theses cases are investigated. The hybrid RANS/LES method is compared to RANS and LES computations in terms of accuracy and level of information on turbulence properties. Chapter 5 is dedicated to flows in IC-engines. The specific flow characteristics are described and quantified and key issues in engine design are discussed. The hybrid RANS/LES method is used for the computation of the steady flow through an intake port and the multi-cycle simulation of the flow in a series production BMW engine. Optical measurements are used to evaluate the quality of the averaged flow field of the simulation as well as the ability to predict cyclic variations of the gas motion in IC-engines.


Book Synopsis Hybrid Turbulence Simulation to Predict Cyclic Variations by : Volker Sohm

Download or read book Hybrid Turbulence Simulation to Predict Cyclic Variations written by Volker Sohm and published by Cuvillier Verlag. This book was released on 2007-07-06 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first passenger car with internal combustion (IC) engine was developed over 120 years ago, the device has been significantly improved regarding efficiency, emissions, smoothness and ease of use. Today IC-engines are used in roughly 850 million passenger cars worldwide. Even though many other concepts as e.g. fuel cells are investigated, it seems that no system can replace IC-engines in the near and intermediate future. Two different combustion concepts are considered to have the potential to full fill future requirements with respect to fuel consumption and emission standards: turbo-charged diesel and stratified spark ignition (SI) engines with high pressure direct injection (DI) systems. Both systems can operate with overall lean air/fuel mixtures. The first DISI-engine in a passenger car used a homogeneous air/fuel mixture. It was implemented in 1951 in the models Gutbrod Superior and Goliath GP 700 leading to a significant reduction in fuel consumption. The first application in mass production of direct injection systems in SI-engines was in 1997 in the Mitsubishi Carisma GDI (gasoline direct injection). The greatest issues of stratified DISI-engines today, which give a much higher potential in fuel consumption economy compared to the homogeneous combustion concept, are combustion stability and emissions. Cycle-to-cycle variations of the gas motion have been identified to play a key role in the further optimization of the device since they have a great impact on the combustion process. Engine parameters are set according to the behavior of the mean cycle. However, the extreme engine cycles, cycles of greatest and slowest burning rates, determine the operating range of the engine. Consequently, the optimal spark timing, equivalence ratio and compression ratio are a compromise. A critical issue in stratified DISI-engines is that cyclic variations are substantial to the combustibility of the air/fuel mixture at the time of the discharge of the spark plug leading to partial burning or even misfire, which is undesirable in terms of engine roughness, efficiency and unburned hydrocarbon emissions. Computational fluid dynamics (CFD) with common Reynolds averaged Naviers-Stokes (RANS) turbulence modeling has been established to be a very efficient and reliable tool within the design process of IC-engines. I. e. optimization of engine geometries can be accomplished with a short turnaround time. Additionally, insights into various physical processes can be gained that are difficult to study experimentally. However, this approach is limited by definition if unsteady features such as cycle-to-cycle variations are investigated and cannot capture this kind of phenomenon. On the other hand, large eddy simulation (LES) provides the ability to predict cyclic variations because smaller spatial scales and temporal fluctuations are resolved. Since in LES a significantly smaller range of turbulent length scales needs to be modeled compared to the RANS approach, the accuracy of LES is superior to RANS. However, resolving smaller temporal and spatial scales requires higher order numerical schemes, smaller time steps and higher resolutions of the computational grids. This can lead to a significant increase of CPU time compared to RANS. For wall-bounded turbulent flows at high Reynolds number and in complex geometries hybrid RANS/LES approaches have become more and more popular in the recent years. They combine attractive features of both methods. These methods provide the opportunity to use LES in regions, where its performance is known to be essentially superior to RANS. In other regions, where the accuracy and the averaged information on turbulent properties is sufficient, RANS can be used in order to save CPU-time. In contrast to pure RANS temporal fluctuations can be resolved in the LES regions in hybrid methods giving these approaches the potential to predict cycle-to-cycle variations or other turbulent flows of highly unsteady nature. The present work focuses on unsteady turbulent flow phenomena in IC-engines such as cyclic variations of the gas motion and investigates the ability of subgrid turbulence modeling to predict those. In Chapter 2 the basic physical principles of fluid dynamics and turbulent flows are described both phenomenologically and based on the underlying governing equations. Furthermore, a review of filtering operations applied to the Navier Stokes equations and state of the art turbulence modeling is given. The different methods as well as the corresponding specific treatment of the boundary conditions of conventional RANS simulation and LES are presented and the hybrid RANS/LES method is introduced. The numerical requirements for the hybrid approach in terms of spatial and temporal schemes as well as the meshing method that is needed for the computation of flows in complex geometries with moving boundaries as in IC-engines are described in Chapter 3. Different numerical schemes of the CFD code CFX, which is used in this work, are evaluated and tested against the numerics of other commercial and academic codes. In Chapter 4 the hybrid method is tested against measurements and data of direct numerical simulation (DNS) for simple flow cases. For a fundamental evaluation of the approach classic turbulence test cases such as the decay of homogeneous isotropic turbulence and the flow past a backward-facing step are used. The most relevant flow configurations in engine development are the steady flow through an intake port/valve assembly and the transient flow in a reciprocating engine. However, before the hybrid method is applied to these complex turbulent flows in IC engines at high Reynolds number, simplified configurations of theses cases are investigated. The hybrid RANS/LES method is compared to RANS and LES computations in terms of accuracy and level of information on turbulence properties. Chapter 5 is dedicated to flows in IC-engines. The specific flow characteristics are described and quantified and key issues in engine design are discussed. The hybrid RANS/LES method is used for the computation of the steady flow through an intake port and the multi-cycle simulation of the flow in a series production BMW engine. Optical measurements are used to evaluate the quality of the averaged flow field of the simulation as well as the ability to predict cyclic variations of the gas motion in IC-engines.


Combustion for Power Generation and Transportation

Combustion for Power Generation and Transportation

Author: Avinash Kumar Agarwal

Publisher: Springer

Published: 2017-01-20

Total Pages: 451

ISBN-13: 981103785X

DOWNLOAD EBOOK

This research monograph presents both fundamental science and applied innovations on several key and emerging technologies involving fossil and alternate fuel utilization in power and transport sectors from renowned experts in the field. Some of the topics covered include: autoignition in laminar and turbulent nonpremixed flames; Langevin simulation of turbulent combustion; lean blowout (LBO) prediction through symbolic time series analysis; lasers and optical diagnostics for next generation IC engine development; exergy destruction study on small DI diesel engine; and gasoline direct injection. The book includes a chapter on carbon sequestration and optimization of enhanced oil and gas recovery. The contents of this book will be useful to researchers and professionals working on all aspects on combustion.


Book Synopsis Combustion for Power Generation and Transportation by : Avinash Kumar Agarwal

Download or read book Combustion for Power Generation and Transportation written by Avinash Kumar Agarwal and published by Springer. This book was released on 2017-01-20 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph presents both fundamental science and applied innovations on several key and emerging technologies involving fossil and alternate fuel utilization in power and transport sectors from renowned experts in the field. Some of the topics covered include: autoignition in laminar and turbulent nonpremixed flames; Langevin simulation of turbulent combustion; lean blowout (LBO) prediction through symbolic time series analysis; lasers and optical diagnostics for next generation IC engine development; exergy destruction study on small DI diesel engine; and gasoline direct injection. The book includes a chapter on carbon sequestration and optimization of enhanced oil and gas recovery. The contents of this book will be useful to researchers and professionals working on all aspects on combustion.


Three-dimensional Calculations of Air Motion, Sprays, and Combustion in a Quiescent Direct-injection Diesel Engine

Three-dimensional Calculations of Air Motion, Sprays, and Combustion in a Quiescent Direct-injection Diesel Engine

Author: T. L. McKinley

Publisher:

Published: 1990

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Three-dimensional Calculations of Air Motion, Sprays, and Combustion in a Quiescent Direct-injection Diesel Engine by : T. L. McKinley

Download or read book Three-dimensional Calculations of Air Motion, Sprays, and Combustion in a Quiescent Direct-injection Diesel Engine written by T. L. McKinley and published by . This book was released on 1990 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Computational Optimization of Internal Combustion Engines

Computational Optimization of Internal Combustion Engines

Author: Yu Shi

Publisher: Springer Science & Business Media

Published: 2011-06-22

Total Pages: 323

ISBN-13: 0857296191

DOWNLOAD EBOOK

Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.


Book Synopsis Computational Optimization of Internal Combustion Engines by : Yu Shi

Download or read book Computational Optimization of Internal Combustion Engines written by Yu Shi and published by Springer Science & Business Media. This book was released on 2011-06-22 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.


Mixture Formation in Internal Combustion Engines

Mixture Formation in Internal Combustion Engines

Author: Carsten Baumgarten

Publisher: Springer Science & Business Media

Published: 2006-02-13

Total Pages: 320

ISBN-13: 9783540308355

DOWNLOAD EBOOK

A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.


Book Synopsis Mixture Formation in Internal Combustion Engines by : Carsten Baumgarten

Download or read book Mixture Formation in Internal Combustion Engines written by Carsten Baumgarten and published by Springer Science & Business Media. This book was released on 2006-02-13 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.


Introduction to Modeling and Control of Internal Combustion Engine Systems

Introduction to Modeling and Control of Internal Combustion Engine Systems

Author: Lino Guzzella

Publisher: Springer Science & Business Media

Published: 2009-12-21

Total Pages: 362

ISBN-13: 3642107753

DOWNLOAD EBOOK

Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: restructured and slightly extended section on superchargers, short subsection on rotational oscillations and their treatment on engine test-benches, complete section on modeling, detection, and control of engine knock, improved physical and chemical model for the three-way catalytic converter, new methodology for the design of an air-to-fuel ratio controller, short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects.


Book Synopsis Introduction to Modeling and Control of Internal Combustion Engine Systems by : Lino Guzzella

Download or read book Introduction to Modeling and Control of Internal Combustion Engine Systems written by Lino Guzzella and published by Springer Science & Business Media. This book was released on 2009-12-21 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: restructured and slightly extended section on superchargers, short subsection on rotational oscillations and their treatment on engine test-benches, complete section on modeling, detection, and control of engine knock, improved physical and chemical model for the three-way catalytic converter, new methodology for the design of an air-to-fuel ratio controller, short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects.


Modeling Engine Spray and Combustion Processes

Modeling Engine Spray and Combustion Processes

Author: Gunnar Stiesch

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 293

ISBN-13: 3662087901

DOWNLOAD EBOOK

The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.


Book Synopsis Modeling Engine Spray and Combustion Processes by : Gunnar Stiesch

Download or read book Modeling Engine Spray and Combustion Processes written by Gunnar Stiesch and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.