A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing

A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing

Author: Daniel Cohen-Or

Publisher: CRC Press

Published: 2015-05-21

Total Pages: 238

ISBN-13: 1498706304

DOWNLOAD EBOOK

A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing shows how to use a collection of mathematical techniques to solve important problems in applied mathematics and computer science areas. The book discusses fundamental tools in analytical geometry and linear algebra. It covers a wide range of topics


Book Synopsis A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing by : Daniel Cohen-Or

Download or read book A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing written by Daniel Cohen-Or and published by CRC Press. This book was released on 2015-05-21 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing shows how to use a collection of mathematical techniques to solve important problems in applied mathematics and computer science areas. The book discusses fundamental tools in analytical geometry and linear algebra. It covers a wide range of topics


International Conference on Cognitive based Information Processing and Applications (CIPA 2021)

International Conference on Cognitive based Information Processing and Applications (CIPA 2021)

Author: Bernard J. Jansen

Publisher: Springer Nature

Published: 2021-09-26

Total Pages: 1020

ISBN-13: 9811658544

DOWNLOAD EBOOK

This book contains papers presented at the International Conference on Cognitive based Information Processing and Applications (CIPA) held during August 21, 2021, online conference (since COVID 19), which is divided into a 2-volume book. The papers in the second volume represent the various technological advancements in network information processing, graphics and image processing, medical care, machine learning, smart cities. It caters to postgraduate students, researchers, and practitioners specializing and working in the area of cognitive-inspired computing and information processing.


Book Synopsis International Conference on Cognitive based Information Processing and Applications (CIPA 2021) by : Bernard J. Jansen

Download or read book International Conference on Cognitive based Information Processing and Applications (CIPA 2021) written by Bernard J. Jansen and published by Springer Nature. This book was released on 2021-09-26 with total page 1020 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains papers presented at the International Conference on Cognitive based Information Processing and Applications (CIPA) held during August 21, 2021, online conference (since COVID 19), which is divided into a 2-volume book. The papers in the second volume represent the various technological advancements in network information processing, graphics and image processing, medical care, machine learning, smart cities. It caters to postgraduate students, researchers, and practitioners specializing and working in the area of cognitive-inspired computing and information processing.


3D Shape Analysis

3D Shape Analysis

Author: Hamid Laga

Publisher: John Wiley & Sons

Published: 2019-01-07

Total Pages: 368

ISBN-13: 1119405106

DOWNLOAD EBOOK

An in-depth description of the state-of-the-art of 3D shape analysis techniques and their applications This book discusses the different topics that come under the title of "3D shape analysis". It covers the theoretical foundations and the major solutions that have been presented in the literature. It also establishes links between solutions proposed by different communities that studied 3D shape, such as mathematics and statistics, medical imaging, computer vision, and computer graphics. The first part of 3D Shape Analysis: Fundamentals, Theory, and Applications provides a review of the background concepts such as methods for the acquisition and representation of 3D geometries, and the fundamentals of geometry and topology. It specifically covers stereo matching, structured light, and intrinsic vs. extrinsic properties of shape. Parts 2 and 3 present a range of mathematical and algorithmic tools (which are used for e.g., global descriptors, keypoint detectors, local feature descriptors, and algorithms) that are commonly used for the detection, registration, recognition, classification, and retrieval of 3D objects. Both also place strong emphasis on recent techniques motivated by the spread of commodity devices for 3D acquisition. Part 4 demonstrates the use of these techniques in a selection of 3D shape analysis applications. It covers 3D face recognition, object recognition in 3D scenes, and 3D shape retrieval. It also discusses examples of semantic applications and cross domain 3D retrieval, i.e. how to retrieve 3D models using various types of modalities, e.g. sketches and/or images. The book concludes with a summary of the main ideas and discussions of the future trends. 3D Shape Analysis: Fundamentals, Theory, and Applications is an excellent reference for graduate students, researchers, and professionals in different fields of mathematics, computer science, and engineering. It is also ideal for courses in computer vision and computer graphics, as well as for those seeking 3D industrial/commercial solutions.


Book Synopsis 3D Shape Analysis by : Hamid Laga

Download or read book 3D Shape Analysis written by Hamid Laga and published by John Wiley & Sons. This book was released on 2019-01-07 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth description of the state-of-the-art of 3D shape analysis techniques and their applications This book discusses the different topics that come under the title of "3D shape analysis". It covers the theoretical foundations and the major solutions that have been presented in the literature. It also establishes links between solutions proposed by different communities that studied 3D shape, such as mathematics and statistics, medical imaging, computer vision, and computer graphics. The first part of 3D Shape Analysis: Fundamentals, Theory, and Applications provides a review of the background concepts such as methods for the acquisition and representation of 3D geometries, and the fundamentals of geometry and topology. It specifically covers stereo matching, structured light, and intrinsic vs. extrinsic properties of shape. Parts 2 and 3 present a range of mathematical and algorithmic tools (which are used for e.g., global descriptors, keypoint detectors, local feature descriptors, and algorithms) that are commonly used for the detection, registration, recognition, classification, and retrieval of 3D objects. Both also place strong emphasis on recent techniques motivated by the spread of commodity devices for 3D acquisition. Part 4 demonstrates the use of these techniques in a selection of 3D shape analysis applications. It covers 3D face recognition, object recognition in 3D scenes, and 3D shape retrieval. It also discusses examples of semantic applications and cross domain 3D retrieval, i.e. how to retrieve 3D models using various types of modalities, e.g. sketches and/or images. The book concludes with a summary of the main ideas and discussions of the future trends. 3D Shape Analysis: Fundamentals, Theory, and Applications is an excellent reference for graduate students, researchers, and professionals in different fields of mathematics, computer science, and engineering. It is also ideal for courses in computer vision and computer graphics, as well as for those seeking 3D industrial/commercial solutions.


Image and Signal Processing

Image and Signal Processing

Author: Abderrahim El Moataz

Publisher: Springer Nature

Published: 2020-07-08

Total Pages: 388

ISBN-13: 303051935X

DOWNLOAD EBOOK

This volume constitutes the refereed proceedings of the 9th International Conference on Image and Signal Processing, ICISP 2020, which was due to be held in Marrakesh, Morocco, in June 2020. The conference was cancelled due to the COVID-19 pandemic. The 40 revised full papers were carefully reviewed and selected from 84 submissions. The contributions presented in this volume were organized in the following topical sections: digital cultural heritage & color and spectral imaging; data and image processing for precision agriculture; machine learning application and innovation; biomedical imaging; deep learning and applications; pattern recognition; segmentation and retrieval; mathematical imaging & signal processing.


Book Synopsis Image and Signal Processing by : Abderrahim El Moataz

Download or read book Image and Signal Processing written by Abderrahim El Moataz and published by Springer Nature. This book was released on 2020-07-08 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the refereed proceedings of the 9th International Conference on Image and Signal Processing, ICISP 2020, which was due to be held in Marrakesh, Morocco, in June 2020. The conference was cancelled due to the COVID-19 pandemic. The 40 revised full papers were carefully reviewed and selected from 84 submissions. The contributions presented in this volume were organized in the following topical sections: digital cultural heritage & color and spectral imaging; data and image processing for precision agriculture; machine learning application and innovation; biomedical imaging; deep learning and applications; pattern recognition; segmentation and retrieval; mathematical imaging & signal processing.


Applied Geometry for Computer Graphics and CAD

Applied Geometry for Computer Graphics and CAD

Author: Duncan Marsh

Publisher: Springer

Published: 2006-03-30

Total Pages: 350

ISBN-13: 1846281091

DOWNLOAD EBOOK

Focusing on the manipulation and representation of geometrical objects, this book explores the application of geometry to computer graphics and computer-aided design (CAD). Over 300 exercises are included, some new to this edition, and many of which encourage the reader to implement the techniques and algorithms discussed through the use of a computer package with graphing and computer algebra capabilities. A dedicated website also offers further resources and useful links.


Book Synopsis Applied Geometry for Computer Graphics and CAD by : Duncan Marsh

Download or read book Applied Geometry for Computer Graphics and CAD written by Duncan Marsh and published by Springer. This book was released on 2006-03-30 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the manipulation and representation of geometrical objects, this book explores the application of geometry to computer graphics and computer-aided design (CAD). Over 300 exercises are included, some new to this edition, and many of which encourage the reader to implement the techniques and algorithms discussed through the use of a computer package with graphing and computer algebra capabilities. A dedicated website also offers further resources and useful links.


ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics

ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics

Author: Luigi Cocchiarella

Publisher: Springer

Published: 2018-07-06

Total Pages: 2334

ISBN-13: 3319955888

DOWNLOAD EBOOK

This book gathers peer-reviewed papers presented at the 18th International Conference on Geometry and Graphics (ICGG), held in Milan, Italy, on August 3-7, 2018. The spectrum of papers ranges from theoretical research to applications, including education, in several fields of science, technology and the arts. The ICGG 2018 mainly focused on the following topics and subtopics: Theoretical Graphics and Geometry (Geometry of Curves and Surfaces, Kinematic and Descriptive Geometry, Computer Aided Geometric Design), Applied Geometry and Graphics (Modeling of Objects, Phenomena and Processes, Applications of Geometry in Engineering, Art and Architecture, Computer Animation and Games, Graphic Simulation in Urban and Territorial Studies), Engineering Computer Graphics (Computer Aided Design and Drafting, Computational Geometry, Geometric and Solid Modeling, Image Synthesis, Pattern Recognition, Digital Image Processing) and Graphics Education (Education Technology Research, Multimedia Educational Software Development, E-learning, Virtual Reality, Educational Systems, Educational Software Development Tools, MOOCs). Given its breadth of coverage, the book introduces engineers, architects and designers interested in computer applications, graphics and geometry to the latest advances in the field, with a particular focus on science, the arts and mathematics education.


Book Synopsis ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics by : Luigi Cocchiarella

Download or read book ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics written by Luigi Cocchiarella and published by Springer. This book was released on 2018-07-06 with total page 2334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers peer-reviewed papers presented at the 18th International Conference on Geometry and Graphics (ICGG), held in Milan, Italy, on August 3-7, 2018. The spectrum of papers ranges from theoretical research to applications, including education, in several fields of science, technology and the arts. The ICGG 2018 mainly focused on the following topics and subtopics: Theoretical Graphics and Geometry (Geometry of Curves and Surfaces, Kinematic and Descriptive Geometry, Computer Aided Geometric Design), Applied Geometry and Graphics (Modeling of Objects, Phenomena and Processes, Applications of Geometry in Engineering, Art and Architecture, Computer Animation and Games, Graphic Simulation in Urban and Territorial Studies), Engineering Computer Graphics (Computer Aided Design and Drafting, Computational Geometry, Geometric and Solid Modeling, Image Synthesis, Pattern Recognition, Digital Image Processing) and Graphics Education (Education Technology Research, Multimedia Educational Software Development, E-learning, Virtual Reality, Educational Systems, Educational Software Development Tools, MOOCs). Given its breadth of coverage, the book introduces engineers, architects and designers interested in computer applications, graphics and geometry to the latest advances in the field, with a particular focus on science, the arts and mathematics education.


Numerical Geometry of Images

Numerical Geometry of Images

Author: Ron Kimmel

Publisher: Springer Science & Business Media

Published: 2012-09-07

Total Pages: 222

ISBN-13: 0387216375

DOWNLOAD EBOOK

Numerical Geometry of Images examines computational methods and algorithms in image processing. It explores applications like shape from shading, color-image enhancement and segmentation, edge integration, offset curve computation, symmetry axis computation, path planning, minimal geodesic computation, and invariant signature calculation. In addition, it describes and utilizes tools from mathematical morphology, differential geometry, numerical analysis, and calculus of variations. Graduate students, professionals, and researchers with interests in computational geometry, image processing, computer graphics, and algorithms will find this new text / reference an indispensable source of insight of instruction.


Book Synopsis Numerical Geometry of Images by : Ron Kimmel

Download or read book Numerical Geometry of Images written by Ron Kimmel and published by Springer Science & Business Media. This book was released on 2012-09-07 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Geometry of Images examines computational methods and algorithms in image processing. It explores applications like shape from shading, color-image enhancement and segmentation, edge integration, offset curve computation, symmetry axis computation, path planning, minimal geodesic computation, and invariant signature calculation. In addition, it describes and utilizes tools from mathematical morphology, differential geometry, numerical analysis, and calculus of variations. Graduate students, professionals, and researchers with interests in computational geometry, image processing, computer graphics, and algorithms will find this new text / reference an indispensable source of insight of instruction.


Visualizing Quaternions

Visualizing Quaternions

Author: Andrew J. Hanson

Publisher: Elsevier

Published: 2006-02-06

Total Pages: 530

ISBN-13: 0080474772

DOWNLOAD EBOOK

Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available. The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. Covers both non-mathematical and mathematical approaches to quaternions.


Book Synopsis Visualizing Quaternions by : Andrew J. Hanson

Download or read book Visualizing Quaternions written by Andrew J. Hanson and published by Elsevier. This book was released on 2006-02-06 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available. The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. Covers both non-mathematical and mathematical approaches to quaternions.


Guide to Computational Geometry Processing

Guide to Computational Geometry Processing

Author: J. Andreas Bærentzen

Publisher: Springer Science & Business Media

Published: 2012-05-31

Total Pages: 330

ISBN-13: 1447140753

DOWNLOAD EBOOK

This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.


Book Synopsis Guide to Computational Geometry Processing by : J. Andreas Bærentzen

Download or read book Guide to Computational Geometry Processing written by J. Andreas Bærentzen and published by Springer Science & Business Media. This book was released on 2012-05-31 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.


Geometric Methods and Applications

Geometric Methods and Applications

Author: Jean Gallier

Publisher: Springer

Published: 2013-04-19

Total Pages: 0

ISBN-13: 9781461428244

DOWNLOAD EBOOK

This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning. This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics. In this extensively updated second edition, more material on convex sets, Farkas’s lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA. The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers. Reviews of first edition: "Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001) "...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)


Book Synopsis Geometric Methods and Applications by : Jean Gallier

Download or read book Geometric Methods and Applications written by Jean Gallier and published by Springer. This book was released on 2013-04-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning. This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics. In this extensively updated second edition, more material on convex sets, Farkas’s lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA. The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers. Reviews of first edition: "Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001) "...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)