Advanced Autonomous Vehicle Design for Severe Environments

Advanced Autonomous Vehicle Design for Severe Environments

Author: V.V. Vantsevich

Publisher: IOS Press

Published: 2015-10-20

Total Pages: 408

ISBN-13: 1614995761

DOWNLOAD EBOOK

Classical vehicle dynamics, which is the basis for manned ground vehicle design, has exhausted its potential for providing novel design concepts to a large degree. At the same time, unmanned ground vehicle (UGV) dynamics is still in its infancy and is currently being developed using general analytical dynamics principles with very little input from actual vehicle dynamics theory. This technical book presents outcomes from the NATO Advanced Study Institute (ASI) ‘Advanced Autonomous Vehicle Design for Severe Environments’, held in Coventry, UK, in July 2014. The ASI provided a platform for world class professionals to meet and discuss leading-edge research, engineering accomplishments and future trends in manned and unmanned ground vehicle dynamics, terrain mobility and energy efficiency. The outcomes of this collective effort serve as an analytical foundation for autonomous vehicle design. Topics covered include: historical aspects, pivotal accomplishments and the analysis of future trends in on- and off-road manned and unmanned vehicle dynamics; terramechanics, soil dynamic characteristics, uncertainties and stochastic characteristics of vehicle-environment interaction for agile vehicle dynamics modeling; new methods and techniques in on-line control and learning for vehicle autonomy; fundamentals of agility and severe environments; mechatronics and cyber-physics issues of agile vehicle dynamics to design for control, energy harvesting and cyber security; and case studies of agile and inverse vehicle dynamics and vehicle systems design, including optimisation of suspension and driveline systems. The book targets graduate students, who desire to advance further in leading-edge vehicle dynamics topics in manned and unmanned ground vehicles, PhD students continuing their research work and building advanced curricula in academia and industry, and researchers in government agencies and private companies.


Book Synopsis Advanced Autonomous Vehicle Design for Severe Environments by : V.V. Vantsevich

Download or read book Advanced Autonomous Vehicle Design for Severe Environments written by V.V. Vantsevich and published by IOS Press. This book was released on 2015-10-20 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical vehicle dynamics, which is the basis for manned ground vehicle design, has exhausted its potential for providing novel design concepts to a large degree. At the same time, unmanned ground vehicle (UGV) dynamics is still in its infancy and is currently being developed using general analytical dynamics principles with very little input from actual vehicle dynamics theory. This technical book presents outcomes from the NATO Advanced Study Institute (ASI) ‘Advanced Autonomous Vehicle Design for Severe Environments’, held in Coventry, UK, in July 2014. The ASI provided a platform for world class professionals to meet and discuss leading-edge research, engineering accomplishments and future trends in manned and unmanned ground vehicle dynamics, terrain mobility and energy efficiency. The outcomes of this collective effort serve as an analytical foundation for autonomous vehicle design. Topics covered include: historical aspects, pivotal accomplishments and the analysis of future trends in on- and off-road manned and unmanned vehicle dynamics; terramechanics, soil dynamic characteristics, uncertainties and stochastic characteristics of vehicle-environment interaction for agile vehicle dynamics modeling; new methods and techniques in on-line control and learning for vehicle autonomy; fundamentals of agility and severe environments; mechatronics and cyber-physics issues of agile vehicle dynamics to design for control, energy harvesting and cyber security; and case studies of agile and inverse vehicle dynamics and vehicle systems design, including optimisation of suspension and driveline systems. The book targets graduate students, who desire to advance further in leading-edge vehicle dynamics topics in manned and unmanned ground vehicles, PhD students continuing their research work and building advanced curricula in academia and industry, and researchers in government agencies and private companies.


Internet of Things and Connected Technologies

Internet of Things and Connected Technologies

Author: Rajiv Misra

Publisher: Springer Nature

Published: 2021-05-29

Total Pages: 539

ISBN-13: 3030767361

DOWNLOAD EBOOK

This book presents the recent research adoption of a variety of enabling wireless communication technologies like RFID tags, BLE, ZigBee, etc., and embedded sensor and actuator nodes, and various protocols like CoAP, MQTT, DNS, etc., that has made Internet of things (IoT) to step out of its infancy to become smart things. Now, smart sensors can collaborate directly with the machine without human involvement to automate decision making or to control a task. Smart technologies including green electronics, green radios, fuzzy neural approaches, and intelligent signal processing techniques play important roles in the developments of the wearable healthcare systems. In the proceedings of 5th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2020, brought out research works on the advances in the Internet of things (IoT) and connected technologies (various protocols, standards, etc.). This conference aimed at providing a forum to discuss the recent advances in enabling technologies and applications for IoT.


Book Synopsis Internet of Things and Connected Technologies by : Rajiv Misra

Download or read book Internet of Things and Connected Technologies written by Rajiv Misra and published by Springer Nature. This book was released on 2021-05-29 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the recent research adoption of a variety of enabling wireless communication technologies like RFID tags, BLE, ZigBee, etc., and embedded sensor and actuator nodes, and various protocols like CoAP, MQTT, DNS, etc., that has made Internet of things (IoT) to step out of its infancy to become smart things. Now, smart sensors can collaborate directly with the machine without human involvement to automate decision making or to control a task. Smart technologies including green electronics, green radios, fuzzy neural approaches, and intelligent signal processing techniques play important roles in the developments of the wearable healthcare systems. In the proceedings of 5th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2020, brought out research works on the advances in the Internet of things (IoT) and connected technologies (various protocols, standards, etc.). This conference aimed at providing a forum to discuss the recent advances in enabling technologies and applications for IoT.


Autonomous Vehicles for Safer Driving

Autonomous Vehicles for Safer Driving

Author: Ronald K Jurgen

Publisher: SAE International

Published: 2013-04-16

Total Pages: 269

ISBN-13: 0768079934

DOWNLOAD EBOOK

Self-driving cars are no longer in the realm of science fiction, thanks to the integration of numerous automotive technologies that have matured over many years. Technologies such as adaptive cruise control, forward collision warning, lane departure warning, and V2V/V2I communications are being merged into one complex system. The papers in this compendium were carefully selected to bring the reader up to date on successful demonstrations of autonomous vehicles, ongoing projects, and what the future may hold for this technology. It is divided into three sections: overview, major design and test collaborations, and a sampling of autonomous vehicle research projects. The comprehensive overview paper covers the current state of autonomous vehicle research and development as well as obstacles to overcome and a possible roadmap for major new technology developments and collaborative relationships. The section on major design and test collaborations covers Sartre, DARPA contests, and the USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications (CAMP-VSC2) Consortium. The final section presents seven SAE papers on significant recent and ongoing research by individual companies on a variety of approaches to autonomous vehicles. This book will be of interest to a wide range of readers: engineers at automakers and electronic component suppliers; software engineers; computer systems analysts and architects; academics and researchers within the electronics, computing, and automotive industries; legislators, managers, and other decision-makers in the government highway sector; traffic safety professionals; and insurance and legal practitioners.


Book Synopsis Autonomous Vehicles for Safer Driving by : Ronald K Jurgen

Download or read book Autonomous Vehicles for Safer Driving written by Ronald K Jurgen and published by SAE International. This book was released on 2013-04-16 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-driving cars are no longer in the realm of science fiction, thanks to the integration of numerous automotive technologies that have matured over many years. Technologies such as adaptive cruise control, forward collision warning, lane departure warning, and V2V/V2I communications are being merged into one complex system. The papers in this compendium were carefully selected to bring the reader up to date on successful demonstrations of autonomous vehicles, ongoing projects, and what the future may hold for this technology. It is divided into three sections: overview, major design and test collaborations, and a sampling of autonomous vehicle research projects. The comprehensive overview paper covers the current state of autonomous vehicle research and development as well as obstacles to overcome and a possible roadmap for major new technology developments and collaborative relationships. The section on major design and test collaborations covers Sartre, DARPA contests, and the USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications (CAMP-VSC2) Consortium. The final section presents seven SAE papers on significant recent and ongoing research by individual companies on a variety of approaches to autonomous vehicles. This book will be of interest to a wide range of readers: engineers at automakers and electronic component suppliers; software engineers; computer systems analysts and architects; academics and researchers within the electronics, computing, and automotive industries; legislators, managers, and other decision-makers in the government highway sector; traffic safety professionals; and insurance and legal practitioners.


Creating Autonomous Vehicle Systems

Creating Autonomous Vehicle Systems

Author: Shaoshan Liu

Publisher: Morgan & Claypool Publishers

Published: 2017-10-25

Total Pages: 198

ISBN-13: 1681730081

DOWNLOAD EBOOK

This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.


Book Synopsis Creating Autonomous Vehicle Systems by : Shaoshan Liu

Download or read book Creating Autonomous Vehicle Systems written by Shaoshan Liu and published by Morgan & Claypool Publishers. This book was released on 2017-10-25 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.


Design and Development of Advanced Control Techniques for an Unmanned Ground Vehicle

Design and Development of Advanced Control Techniques for an Unmanned Ground Vehicle

Author: Amr Mohamed

Publisher:

Published: 2018

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Recent years have seen considerable progress towards the goal of autonomous and unmanned ground vehicles which became essential for conducting military operations. These autonomous vehicles have the capability to operate and react to their environments without external control. Autonomous multi-wheeled combat vehicles are crucial for military applications which offer numerous leverages on modern battlefields. Applying autonomy features to such vehicles significantly increases its combat capabilities and expands its applications to work-day and night for risky missions compared with traditional manned ground vehicles. However, it is associated with some challenges because of their large dimension, heavy weight, and complex geometry. Therefore, the development of autonomous combat vehicles has become a cutting-edge research topic in robotics and automotive engineering. This thesis focuses on the control issues related to applying autonomous features for the multi-wheeled combat vehicles due to their significant influence especially when navigating in the presence of obstacles. The primary concern of path planning is to compute collision-free paths. Another equally important issue is to compute a realizable path and, if possible, achieving an optimal path bringing the vehicle to the final position. For these purposes, the developed methodology considers the combination between the optimal control theory using Pontryagin's Minimum Principle (PMP) and Artificial Potential Filed (APF). In addition, a four-axle bicycle model of the actual multi-wheeled combat vehicle considering the vehicle body lateral and yaw dynamics is developed. To generate the vehicle optimal path in real time, an Artificial Neural Network (ANN) model is proposed. The introduced ANN model allows the vehicle to carry out an autonomous navigation in real time with maintaining the path optimality by considering the vehicle parameters in terms of yaw rate, lateral velocity, heading angle and steering angle. Subsequently, a comparative study and performance analysis of the developed optimal path algorithm using PMP with Dynamic Programming (DP) method was carried out in order to guarantee the global optimum solution. Determining the accurate vehicle position offers sufficient capabilities which increase the autonomy and safety features, especially in case of off-road locomotion. In this regard, a hybrid framework for positioning technique based on the integration of GPS/INS for combat vehicles is developed. The developed algorithm is able to provide an accurate and reliable vehicle positioning information, even if the number of visible satellites is less than four, due to the harsh vehicle operation environments. In this work, a scaled multi-wheeled combat vehicle model was developed using system identification methodology. Different system identification methods are considered and applied to solve and identify this problem. An advanced control system in terms of fuzzy logic, robust, and PID control systems are designed. In addition, the Processor-In-the-Loop co-simulation (PIL) is considered, which permits and achieves a more realistic situation where the developed control algorithms running on a dedicated processor. The performance and effectiveness of the developed controllers are evaluated for vehicle heading angle tracking using different predefined heading angles. Furthermore, a comparative evaluation to assess the feasibility of the developed control algorithms is discussed. Finally, it should be stated that this work offers the first attempt in the open literature to control the scaled multi-wheeled combat vehicle using different advanced control techniques such as, fuzzy logic, [...]∞.


Book Synopsis Design and Development of Advanced Control Techniques for an Unmanned Ground Vehicle by : Amr Mohamed

Download or read book Design and Development of Advanced Control Techniques for an Unmanned Ground Vehicle written by Amr Mohamed and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen considerable progress towards the goal of autonomous and unmanned ground vehicles which became essential for conducting military operations. These autonomous vehicles have the capability to operate and react to their environments without external control. Autonomous multi-wheeled combat vehicles are crucial for military applications which offer numerous leverages on modern battlefields. Applying autonomy features to such vehicles significantly increases its combat capabilities and expands its applications to work-day and night for risky missions compared with traditional manned ground vehicles. However, it is associated with some challenges because of their large dimension, heavy weight, and complex geometry. Therefore, the development of autonomous combat vehicles has become a cutting-edge research topic in robotics and automotive engineering. This thesis focuses on the control issues related to applying autonomous features for the multi-wheeled combat vehicles due to their significant influence especially when navigating in the presence of obstacles. The primary concern of path planning is to compute collision-free paths. Another equally important issue is to compute a realizable path and, if possible, achieving an optimal path bringing the vehicle to the final position. For these purposes, the developed methodology considers the combination between the optimal control theory using Pontryagin's Minimum Principle (PMP) and Artificial Potential Filed (APF). In addition, a four-axle bicycle model of the actual multi-wheeled combat vehicle considering the vehicle body lateral and yaw dynamics is developed. To generate the vehicle optimal path in real time, an Artificial Neural Network (ANN) model is proposed. The introduced ANN model allows the vehicle to carry out an autonomous navigation in real time with maintaining the path optimality by considering the vehicle parameters in terms of yaw rate, lateral velocity, heading angle and steering angle. Subsequently, a comparative study and performance analysis of the developed optimal path algorithm using PMP with Dynamic Programming (DP) method was carried out in order to guarantee the global optimum solution. Determining the accurate vehicle position offers sufficient capabilities which increase the autonomy and safety features, especially in case of off-road locomotion. In this regard, a hybrid framework for positioning technique based on the integration of GPS/INS for combat vehicles is developed. The developed algorithm is able to provide an accurate and reliable vehicle positioning information, even if the number of visible satellites is less than four, due to the harsh vehicle operation environments. In this work, a scaled multi-wheeled combat vehicle model was developed using system identification methodology. Different system identification methods are considered and applied to solve and identify this problem. An advanced control system in terms of fuzzy logic, robust, and PID control systems are designed. In addition, the Processor-In-the-Loop co-simulation (PIL) is considered, which permits and achieves a more realistic situation where the developed control algorithms running on a dedicated processor. The performance and effectiveness of the developed controllers are evaluated for vehicle heading angle tracking using different predefined heading angles. Furthermore, a comparative evaluation to assess the feasibility of the developed control algorithms is discussed. Finally, it should be stated that this work offers the first attempt in the open literature to control the scaled multi-wheeled combat vehicle using different advanced control techniques such as, fuzzy logic, [...]∞.


Sustainability Prospects for Autonomous Vehicles

Sustainability Prospects for Autonomous Vehicles

Author: George T. Martin

Publisher: Routledge

Published: 2019-05-31

Total Pages: 154

ISBN-13: 1351109936

DOWNLOAD EBOOK

The Autonomous Vehicle (AV) has been strongly heralded as the most exciting innovation in automobility for decades. Autonomous Vehicles are no longer an innovation of the future (seen only in science fiction) but are now being road-tested for use. And yet while the technical and economic success and possibilities of the AV have been widely debated, there has been a notable lack of discussion around the social, behavioural, and environmental implications. This book is the first to address these issues and to deeply consider the environmental and social sustainability outlook for the AV and how it will impact on communities. Environmental and social sustainability are goals unlike those of technical development (a new tool) and economic development (a new investment). The goal of sustainability is development of societies that live well and equitably within their ecological limits. Is it reasonable and desirable that only technical and economic success comprise the swelling AV parade, or should we be looking at the wider impacts on personal well-being, wider society, and the environment? The uptake for AVs looks to be lengthy, disjointed, and episodic, in large measure because it faces a range of known unknown risks. This book assesses the environmental and social sustainability potential for AVs based on their prospective energy use and their impacts on climate change, urban landscapes, public health, mobility inequalities, and individual and social well-being. It examines public attitudes about AV use and its risk of fostering a rebound effect that compromises potential sustainability gains. The book concludes with a discussion of critical issues involved in sustainable AV diffusion.


Book Synopsis Sustainability Prospects for Autonomous Vehicles by : George T. Martin

Download or read book Sustainability Prospects for Autonomous Vehicles written by George T. Martin and published by Routledge. This book was released on 2019-05-31 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Autonomous Vehicle (AV) has been strongly heralded as the most exciting innovation in automobility for decades. Autonomous Vehicles are no longer an innovation of the future (seen only in science fiction) but are now being road-tested for use. And yet while the technical and economic success and possibilities of the AV have been widely debated, there has been a notable lack of discussion around the social, behavioural, and environmental implications. This book is the first to address these issues and to deeply consider the environmental and social sustainability outlook for the AV and how it will impact on communities. Environmental and social sustainability are goals unlike those of technical development (a new tool) and economic development (a new investment). The goal of sustainability is development of societies that live well and equitably within their ecological limits. Is it reasonable and desirable that only technical and economic success comprise the swelling AV parade, or should we be looking at the wider impacts on personal well-being, wider society, and the environment? The uptake for AVs looks to be lengthy, disjointed, and episodic, in large measure because it faces a range of known unknown risks. This book assesses the environmental and social sustainability potential for AVs based on their prospective energy use and their impacts on climate change, urban landscapes, public health, mobility inequalities, and individual and social well-being. It examines public attitudes about AV use and its risk of fostering a rebound effect that compromises potential sustainability gains. The book concludes with a discussion of critical issues involved in sustainable AV diffusion.


Design and Advanced Robust Chassis Dynamics Control for X-by-Wire Unmanned Ground Vehicle

Design and Advanced Robust Chassis Dynamics Control for X-by-Wire Unmanned Ground Vehicle

Author: Jun NI

Publisher: Morgan & Claypool Publishers

Published: 2018-01-04

Total Pages: 144

ISBN-13: 1681732521

DOWNLOAD EBOOK

X-by-wire Unmanned Ground Vehicles (UGVs) have been attracting increased attention for various civilian or military applications. The x-by-wire techniques (drive-by-wire, steer-by-wire, and brake-by-wire techniques) provide the possibility of achieving novel vehicle design and advanced dynamics control, which can significantly improve the overall performance, maneuverability, and mobility of the UGVs. However, there are few full x-by-wire UGVs prototype models reported in the world. Therefore, there is no book that can fully describe the design, configuration, and dynamics control approach of full x-by-wire UGVs, which makes it difficult for readers to study this hot and interesting topic. In this book, we use a full x-by-wire UGV, developed by our group, as the example. This UGV is completely x-by-wire with four in-wheel motors driven and a four-wheel independent steer steer. In this book, the overall design of the UGV, the design of the key subsystems (battery pack system, in-wheel motor-driven system, independent steer system, remote and autonomous control system), and the dynamics control approach will be introduced in detail, and the experiment's results will be provided to validate the proposed dynamics control approach.


Book Synopsis Design and Advanced Robust Chassis Dynamics Control for X-by-Wire Unmanned Ground Vehicle by : Jun NI

Download or read book Design and Advanced Robust Chassis Dynamics Control for X-by-Wire Unmanned Ground Vehicle written by Jun NI and published by Morgan & Claypool Publishers. This book was released on 2018-01-04 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-by-wire Unmanned Ground Vehicles (UGVs) have been attracting increased attention for various civilian or military applications. The x-by-wire techniques (drive-by-wire, steer-by-wire, and brake-by-wire techniques) provide the possibility of achieving novel vehicle design and advanced dynamics control, which can significantly improve the overall performance, maneuverability, and mobility of the UGVs. However, there are few full x-by-wire UGVs prototype models reported in the world. Therefore, there is no book that can fully describe the design, configuration, and dynamics control approach of full x-by-wire UGVs, which makes it difficult for readers to study this hot and interesting topic. In this book, we use a full x-by-wire UGV, developed by our group, as the example. This UGV is completely x-by-wire with four in-wheel motors driven and a four-wheel independent steer steer. In this book, the overall design of the UGV, the design of the key subsystems (battery pack system, in-wheel motor-driven system, independent steer system, remote and autonomous control system), and the dynamics control approach will be introduced in detail, and the experiment's results will be provided to validate the proposed dynamics control approach.


Autonomous Vehicle Technology

Autonomous Vehicle Technology

Author: James M. Anderson

Publisher: Rand Corporation

Published: 2014-01-10

Total Pages: 215

ISBN-13: 0833084372

DOWNLOAD EBOOK

The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.


Book Synopsis Autonomous Vehicle Technology by : James M. Anderson

Download or read book Autonomous Vehicle Technology written by James M. Anderson and published by Rand Corporation. This book was released on 2014-01-10 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.


Control Applications of Vehicle Dynamics

Control Applications of Vehicle Dynamics

Author: Jingsheng Yu

Publisher: CRC Press

Published: 2021-12-20

Total Pages: 368

ISBN-13: 1000441946

DOWNLOAD EBOOK

This book presents essential knowledge of car vehicle dynamics and control theory with NI LabVIEW software product application, resulting in a practical yet highly technical guide for designing advanced vehicle dynamics and vehicle system controllers. Presenting a clear overview of fundamental vehicle dynamics and vehicle system mathematical models, the book covers linear and non-linear design of model based controls such as wheel slip control, vehicle speed control, path following control, vehicle stability and rollover control, stabilization of vehicle-trailer system. Specific applications to autonomous vehicles are described among the methods. It details the practical applications of Kalman-Bucy filtering and the observer design for sensor signal estimation, alongside lateral vehicle dynamics and vehicle rollover dynamics. The book also discusses high level controllers, alongside a clear explanation of basic control principles for regenerative braking in both electric and hybrid vehicles, and wheel torque vectoring systems. Concrete LabVIEW simulation examples of how the models and controls are used in representative applications, along with software algorithms and LabVIEW block diagrams are illustrated. It will be of interest to engineering students, automotive engineering students and automotive engineers and researchers.


Book Synopsis Control Applications of Vehicle Dynamics by : Jingsheng Yu

Download or read book Control Applications of Vehicle Dynamics written by Jingsheng Yu and published by CRC Press. This book was released on 2021-12-20 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents essential knowledge of car vehicle dynamics and control theory with NI LabVIEW software product application, resulting in a practical yet highly technical guide for designing advanced vehicle dynamics and vehicle system controllers. Presenting a clear overview of fundamental vehicle dynamics and vehicle system mathematical models, the book covers linear and non-linear design of model based controls such as wheel slip control, vehicle speed control, path following control, vehicle stability and rollover control, stabilization of vehicle-trailer system. Specific applications to autonomous vehicles are described among the methods. It details the practical applications of Kalman-Bucy filtering and the observer design for sensor signal estimation, alongside lateral vehicle dynamics and vehicle rollover dynamics. The book also discusses high level controllers, alongside a clear explanation of basic control principles for regenerative braking in both electric and hybrid vehicles, and wheel torque vectoring systems. Concrete LabVIEW simulation examples of how the models and controls are used in representative applications, along with software algorithms and LabVIEW block diagrams are illustrated. It will be of interest to engineering students, automotive engineering students and automotive engineers and researchers.


Measuring Automated Vehicle Safety

Measuring Automated Vehicle Safety

Author: Laura Fraade-Blanar

Publisher:

Published: 2018

Total Pages: 0

ISBN-13: 9781977401649

DOWNLOAD EBOOK

This report presents a framework for measuring safety in automated vehicles (AVs): how to define safety for AVs, how to measure safety for AVs, and how to communicate what is learned or understood about AVs.


Book Synopsis Measuring Automated Vehicle Safety by : Laura Fraade-Blanar

Download or read book Measuring Automated Vehicle Safety written by Laura Fraade-Blanar and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report presents a framework for measuring safety in automated vehicles (AVs): how to define safety for AVs, how to measure safety for AVs, and how to communicate what is learned or understood about AVs.