Advanced Image Processing in Magnetic Resonance Imaging

Advanced Image Processing in Magnetic Resonance Imaging

Author: Luigi Landini

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 632

ISBN-13: 1420028669

DOWNLOAD EBOOK

The popularity of magnetic resonance (MR) imaging in medicine is no mystery: it is non-invasive, it produces high quality structural and functional image data, and it is very versatile and flexible. Research into MR technology is advancing at a blistering pace, and modern engineers must keep up with the latest developments. This is only possible with a firm grounding in the basic principles of MR, and Advanced Image Processing in Magnetic Resonance Imaging solidly integrates this foundational knowledge with the latest advances in the field. Beginning with the basics of signal and image generation and reconstruction, the book covers in detail the signal processing techniques and algorithms, filtering techniques for MR images, quantitative analysis including image registration and integration of EEG and MEG techniques with MR, and MR spectroscopy techniques. The final section of the book explores functional MRI (fMRI) in detail, discussing fundamentals and advanced exploratory data analysis, Bayesian inference, and nonlinear analysis. Many of the results presented in the book are derived from the contributors' own work, imparting highly practical experience through experimental and numerical methods. Contributed by international experts at the forefront of the field, Advanced Image Processing in Magnetic Resonance Imaging is an indispensable guide for anyone interested in further advancing the technology and capabilities of MR imaging.


Book Synopsis Advanced Image Processing in Magnetic Resonance Imaging by : Luigi Landini

Download or read book Advanced Image Processing in Magnetic Resonance Imaging written by Luigi Landini and published by CRC Press. This book was released on 2018-10-03 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The popularity of magnetic resonance (MR) imaging in medicine is no mystery: it is non-invasive, it produces high quality structural and functional image data, and it is very versatile and flexible. Research into MR technology is advancing at a blistering pace, and modern engineers must keep up with the latest developments. This is only possible with a firm grounding in the basic principles of MR, and Advanced Image Processing in Magnetic Resonance Imaging solidly integrates this foundational knowledge with the latest advances in the field. Beginning with the basics of signal and image generation and reconstruction, the book covers in detail the signal processing techniques and algorithms, filtering techniques for MR images, quantitative analysis including image registration and integration of EEG and MEG techniques with MR, and MR spectroscopy techniques. The final section of the book explores functional MRI (fMRI) in detail, discussing fundamentals and advanced exploratory data analysis, Bayesian inference, and nonlinear analysis. Many of the results presented in the book are derived from the contributors' own work, imparting highly practical experience through experimental and numerical methods. Contributed by international experts at the forefront of the field, Advanced Image Processing in Magnetic Resonance Imaging is an indispensable guide for anyone interested in further advancing the technology and capabilities of MR imaging.


High-Performance Medical Image Processing

High-Performance Medical Image Processing

Author: Sanjay Saxena

Publisher: CRC Press

Published: 2022-07-07

Total Pages: 337

ISBN-13: 1000410374

DOWNLOAD EBOOK

The processing of medical images in a reasonable timeframe and with high definition is very challenging. This volume helps to meet that challenge by presenting a thorough overview of medical imaging modalities, its processing, high-performance computing, and the need to embed parallelism in medical image processing techniques to achieve efficient and fast results. With contributions from researchers from prestigious laboratories and educational institutions, High-Performance Medical Image Processing provides important information on medical image processing techniques, parallel computing techniques, and embedding parallelism in different image processing techniques. A comprehensive review of parallel algorithms in medical image processing problems is a key feature of this book. The volume presents the relevant theoretical frameworks and the latest empirical research findings in the area and provides detailed descriptions about the diverse high-performance techniques. Topics discussed include parallel computing, multicore architectures and their applications in image processing, machine learning applications, conventional and advanced magnetic resonance imaging methods, hyperspectral image processing, algorithms for segmenting 2D slices for 3D viewing, and more. Case studies, such as on the detection of cancer tumors, expound on the information presented. Key features: Provides descriptions of different medical imaging modalities and their applications Discusses the basics and advanced aspects of parallel computing with different multicore architectures Expounds on the need for embedding data and task parallelism in different medical image processing techniques Presents helpful examples and case studies of the discussed methods This book will be valuable for professionals, researchers, and students working in the field of healthcare engineering, medical imaging technology, applications in machine and deep learning, and more. It is also appropriate for courses in computer engineering, biomedical engineering and electrical engineering based on artificial intelligence, parallel computing, high performance computing, and machine learning and its applications in medical imaging.


Book Synopsis High-Performance Medical Image Processing by : Sanjay Saxena

Download or read book High-Performance Medical Image Processing written by Sanjay Saxena and published by CRC Press. This book was released on 2022-07-07 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The processing of medical images in a reasonable timeframe and with high definition is very challenging. This volume helps to meet that challenge by presenting a thorough overview of medical imaging modalities, its processing, high-performance computing, and the need to embed parallelism in medical image processing techniques to achieve efficient and fast results. With contributions from researchers from prestigious laboratories and educational institutions, High-Performance Medical Image Processing provides important information on medical image processing techniques, parallel computing techniques, and embedding parallelism in different image processing techniques. A comprehensive review of parallel algorithms in medical image processing problems is a key feature of this book. The volume presents the relevant theoretical frameworks and the latest empirical research findings in the area and provides detailed descriptions about the diverse high-performance techniques. Topics discussed include parallel computing, multicore architectures and their applications in image processing, machine learning applications, conventional and advanced magnetic resonance imaging methods, hyperspectral image processing, algorithms for segmenting 2D slices for 3D viewing, and more. Case studies, such as on the detection of cancer tumors, expound on the information presented. Key features: Provides descriptions of different medical imaging modalities and their applications Discusses the basics and advanced aspects of parallel computing with different multicore architectures Expounds on the need for embedding data and task parallelism in different medical image processing techniques Presents helpful examples and case studies of the discussed methods This book will be valuable for professionals, researchers, and students working in the field of healthcare engineering, medical imaging technology, applications in machine and deep learning, and more. It is also appropriate for courses in computer engineering, biomedical engineering and electrical engineering based on artificial intelligence, parallel computing, high performance computing, and machine learning and its applications in medical imaging.


Handbook of Medical Image Processing and Analysis

Handbook of Medical Image Processing and Analysis

Author: Isaac Bankman

Publisher: Elsevier

Published: 2008-12-24

Total Pages: 1009

ISBN-13: 008055914X

DOWNLOAD EBOOK

The Handbook of Medical Image Processing and Analysis is a comprehensive compilation of concepts and techniques used for processing and analyzing medical images after they have been generated or digitized. The Handbook is organized into six sections that relate to the main functions: enhancement, segmentation, quantification, registration, visualization, and compression, storage and communication.The second edition is extensively revised and updated throughout, reflecting new technology and research, and includes new chapters on: higher order statistics for tissue segmentation; tumor growth modeling in oncological image analysis; analysis of cell nuclear features in fluorescence microscopy images; imaging and communication in medical and public health informatics; and dynamic mammogram retrieval from web-based image libraries.For those looking to explore advanced concepts and access essential information, this second edition of Handbook of Medical Image Processing and Analysis is an invaluable resource. It remains the most complete single volume reference for biomedical engineers, researchers, professionals and those working in medical imaging and medical image processing.Dr. Isaac N. Bankman is the supervisor of a group that specializes on imaging, laser and sensor systems, modeling, algorithms and testing at the Johns Hopkins University Applied Physics Laboratory. He received his BSc degree in Electrical Engineering from Bogazici University, Turkey, in 1977, the MSc degree in Electronics from University of Wales, Britain, in 1979, and a PhD in Biomedical Engineering from the Israel Institute of Technology, Israel, in 1985. He is a member of SPIE. Includes contributions from internationally renowned authors from leading institutions NEW! 35 of 56 chapters have been revised and updated. Additionally, five new chapters have been added on important topics incluling Nonlinear 3D Boundary Detection, Adaptive Algorithms for Cancer Cytological Diagnosis, Dynamic Mammogram Retrieval from Web-Based Image Libraries, Imaging and Communication in Health Informatics and Tumor Growth Modeling in Oncological Image Analysis. Provides a complete collection of algorithms in computer processing of medical images Contains over 60 pages of stunning, four-color images


Book Synopsis Handbook of Medical Image Processing and Analysis by : Isaac Bankman

Download or read book Handbook of Medical Image Processing and Analysis written by Isaac Bankman and published by Elsevier. This book was released on 2008-12-24 with total page 1009 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Medical Image Processing and Analysis is a comprehensive compilation of concepts and techniques used for processing and analyzing medical images after they have been generated or digitized. The Handbook is organized into six sections that relate to the main functions: enhancement, segmentation, quantification, registration, visualization, and compression, storage and communication.The second edition is extensively revised and updated throughout, reflecting new technology and research, and includes new chapters on: higher order statistics for tissue segmentation; tumor growth modeling in oncological image analysis; analysis of cell nuclear features in fluorescence microscopy images; imaging and communication in medical and public health informatics; and dynamic mammogram retrieval from web-based image libraries.For those looking to explore advanced concepts and access essential information, this second edition of Handbook of Medical Image Processing and Analysis is an invaluable resource. It remains the most complete single volume reference for biomedical engineers, researchers, professionals and those working in medical imaging and medical image processing.Dr. Isaac N. Bankman is the supervisor of a group that specializes on imaging, laser and sensor systems, modeling, algorithms and testing at the Johns Hopkins University Applied Physics Laboratory. He received his BSc degree in Electrical Engineering from Bogazici University, Turkey, in 1977, the MSc degree in Electronics from University of Wales, Britain, in 1979, and a PhD in Biomedical Engineering from the Israel Institute of Technology, Israel, in 1985. He is a member of SPIE. Includes contributions from internationally renowned authors from leading institutions NEW! 35 of 56 chapters have been revised and updated. Additionally, five new chapters have been added on important topics incluling Nonlinear 3D Boundary Detection, Adaptive Algorithms for Cancer Cytological Diagnosis, Dynamic Mammogram Retrieval from Web-Based Image Libraries, Imaging and Communication in Health Informatics and Tumor Growth Modeling in Oncological Image Analysis. Provides a complete collection of algorithms in computer processing of medical images Contains over 60 pages of stunning, four-color images


Advanced Biomedical Image Analysis

Advanced Biomedical Image Analysis

Author: Mark Haidekker

Publisher: John Wiley & Sons

Published: 2011-03-29

Total Pages: 545

ISBN-13: 1118099486

DOWNLOAD EBOOK

A comprehensive reference of cutting-edge advanced techniques for quantitative image processing and analysis Medical diagnostics and intervention, and biomedical research rely progressively on imaging techniques, namely, the ability to capture, store, analyze, and display images at the organ, tissue, cellular, and molecular level. These tasks are supported by increasingly powerful computer methods to process and analyze images. This text serves as an authoritative resource and self-study guide explaining sophisticated techniques of quantitative image analysis, with a focus on biomedical applications. It offers both theory and practical examples for immediate application of the topics as well as for in-depth study. Advanced Biomedical Image Analysis presents methods in the four major areas of image processing: image enhancement and restoration, image segmentation, image quantification and classification, and image visualization. In each instance, the theory, mathematical foundation, and basic description of an image processing operator is provided, as well as a discussion of performance features, advantages, and limitations. Key algorithms are provided in pseudo-code to help with implementation, and biomedical examples are included in each chapter. Image registration, storage, transport, and compression are also covered, and there is a review of image analysis and visualization software. Members of the academic community involved in image-related research as well as members of the professional R&D sector will rely on this volume. It is also well suited as a textbook for graduate-level image processing classes in the computer science and engineering fields.


Book Synopsis Advanced Biomedical Image Analysis by : Mark Haidekker

Download or read book Advanced Biomedical Image Analysis written by Mark Haidekker and published by John Wiley & Sons. This book was released on 2011-03-29 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference of cutting-edge advanced techniques for quantitative image processing and analysis Medical diagnostics and intervention, and biomedical research rely progressively on imaging techniques, namely, the ability to capture, store, analyze, and display images at the organ, tissue, cellular, and molecular level. These tasks are supported by increasingly powerful computer methods to process and analyze images. This text serves as an authoritative resource and self-study guide explaining sophisticated techniques of quantitative image analysis, with a focus on biomedical applications. It offers both theory and practical examples for immediate application of the topics as well as for in-depth study. Advanced Biomedical Image Analysis presents methods in the four major areas of image processing: image enhancement and restoration, image segmentation, image quantification and classification, and image visualization. In each instance, the theory, mathematical foundation, and basic description of an image processing operator is provided, as well as a discussion of performance features, advantages, and limitations. Key algorithms are provided in pseudo-code to help with implementation, and biomedical examples are included in each chapter. Image registration, storage, transport, and compression are also covered, and there is a review of image analysis and visualization software. Members of the academic community involved in image-related research as well as members of the professional R&D sector will rely on this volume. It is also well suited as a textbook for graduate-level image processing classes in the computer science and engineering fields.


Principles and Advanced Methods in Medical Imaging and Image Analysis

Principles and Advanced Methods in Medical Imaging and Image Analysis

Author: Atam P. Dhawan

Publisher: World Scientific

Published: 2008

Total Pages: 869

ISBN-13: 9812814809

DOWNLOAD EBOOK

Computerized medical imaging and image analysis have been the central focus in diagnostic radiology. They provide revolutionalizing tools for the visualization of physiology as well as the understanding and quantitative measurement of physiological parameters. This book offers in-depth knowledge of medical imaging instrumentation and techniques as well as multidimensional image analysis and classification methods for research, education, and applications in computer-aided diagnostic radiology. Internationally renowned researchers and experts in their respective areas provide detailed descriptions of the basic foundation as well as the most recent developments in medical imaging, thus helping readers to understand theoretical and advanced concepts for important research and clinical applications. Sample Chapter(s). Sample Chapter(s). Chapter 1: Introduction to Medical Imaging and Image Analysis: A Multidisciplinary Paradigm (60 KB). Contents: Principles of Medical Imaging and Image Analysis; Recent Advances in Medical Imaging and Image Analysis; Medical Imaging Applications, Case Studies and Future Trends. Readership: Graduate-level readers in medical imaging and medical image processing.


Book Synopsis Principles and Advanced Methods in Medical Imaging and Image Analysis by : Atam P. Dhawan

Download or read book Principles and Advanced Methods in Medical Imaging and Image Analysis written by Atam P. Dhawan and published by World Scientific. This book was released on 2008 with total page 869 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computerized medical imaging and image analysis have been the central focus in diagnostic radiology. They provide revolutionalizing tools for the visualization of physiology as well as the understanding and quantitative measurement of physiological parameters. This book offers in-depth knowledge of medical imaging instrumentation and techniques as well as multidimensional image analysis and classification methods for research, education, and applications in computer-aided diagnostic radiology. Internationally renowned researchers and experts in their respective areas provide detailed descriptions of the basic foundation as well as the most recent developments in medical imaging, thus helping readers to understand theoretical and advanced concepts for important research and clinical applications. Sample Chapter(s). Sample Chapter(s). Chapter 1: Introduction to Medical Imaging and Image Analysis: A Multidisciplinary Paradigm (60 KB). Contents: Principles of Medical Imaging and Image Analysis; Recent Advances in Medical Imaging and Image Analysis; Medical Imaging Applications, Case Studies and Future Trends. Readership: Graduate-level readers in medical imaging and medical image processing.


Advanced Image Processing in Cardiac Magnetic Resonance Imaging with Application in Myocardial Perfusion Quantification

Advanced Image Processing in Cardiac Magnetic Resonance Imaging with Application in Myocardial Perfusion Quantification

Author: Matthew James Jacobs

Publisher:

Published: 2017

Total Pages: 89

ISBN-13:

DOWNLOAD EBOOK

Cardiac magnetic resonance imaging (CMRI) has been proven to be a valuable source of diagnostic information concerning heart health. One application, myocardial blood flow (MBF) quantification using first-pass contrast-enhanced myocardial perfusion, has aided the detection of coronary artery disease and provides an accurate evaluation of myocardial ischemia, an identifier of coronary artery stenosis. However, the image processing and analysis requires tedious user interaction, increasing the time and effort required to utilize it. In addition, it can introduce subjectivity and variability into the data analysis, which further limits the potential use of the modality. This dissertation presents several automated image processing algorithms to increase the accuracy, consistency, and efficiency of CMR image processing, and validates them on large, clinical datasets. First, an automated method is proposed to measure the arterial input function (AIF) from the left ventricle (LV), which is required for the accurate quantification of MBF. The proposed algorithm consists of several automated image processing steps including motion correction, intensity correction, detection of the LV, independent component analysis, and LV pixel thresholding to calculate the AIF signal. The method was validated in 270 clinical studies by comparing automated results to manual reference measurements using several quality metrics. Additionally, the MBF was calculated and compared in a subset of 21 clinical studies from healthy volunteers using the automated and manual AIF measurements. The proposed method successfully processed 99.63% of the image series. Manual and automatic AIF measurement showed strong agreement, and the automated method effectively selected bright LV pixels, excluded papillary muscles, and required much less processing time than the manual approach. No significant difference was found in MBF estimates between manually and automatically measured AIFs. Second, this dissertation presents an automated method for segmenting the myocardium from MBF maps, making segmental analysis faster and easier to achieve. The proposed method employs active contours for myocardial segmentation, and landmark detection for the anchoring of sector-wise analysis. These methods were validated in a group of 91 clinical perfusion studies against a manual reference standard. The proposed method processed 100% of the studies successfully and results agreed with the manual reference standard, both in terms of segmented area and measurements from sector-wise analysis. Together, these automated methods form a fully automatic MBF quantification pipeline for first-pass contrast-enhanced myocardial perfusion imaging. These advancements make the modality more readily available and applicable to a larger number of patients and centers throughout the field.


Book Synopsis Advanced Image Processing in Cardiac Magnetic Resonance Imaging with Application in Myocardial Perfusion Quantification by : Matthew James Jacobs

Download or read book Advanced Image Processing in Cardiac Magnetic Resonance Imaging with Application in Myocardial Perfusion Quantification written by Matthew James Jacobs and published by . This book was released on 2017 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cardiac magnetic resonance imaging (CMRI) has been proven to be a valuable source of diagnostic information concerning heart health. One application, myocardial blood flow (MBF) quantification using first-pass contrast-enhanced myocardial perfusion, has aided the detection of coronary artery disease and provides an accurate evaluation of myocardial ischemia, an identifier of coronary artery stenosis. However, the image processing and analysis requires tedious user interaction, increasing the time and effort required to utilize it. In addition, it can introduce subjectivity and variability into the data analysis, which further limits the potential use of the modality. This dissertation presents several automated image processing algorithms to increase the accuracy, consistency, and efficiency of CMR image processing, and validates them on large, clinical datasets. First, an automated method is proposed to measure the arterial input function (AIF) from the left ventricle (LV), which is required for the accurate quantification of MBF. The proposed algorithm consists of several automated image processing steps including motion correction, intensity correction, detection of the LV, independent component analysis, and LV pixel thresholding to calculate the AIF signal. The method was validated in 270 clinical studies by comparing automated results to manual reference measurements using several quality metrics. Additionally, the MBF was calculated and compared in a subset of 21 clinical studies from healthy volunteers using the automated and manual AIF measurements. The proposed method successfully processed 99.63% of the image series. Manual and automatic AIF measurement showed strong agreement, and the automated method effectively selected bright LV pixels, excluded papillary muscles, and required much less processing time than the manual approach. No significant difference was found in MBF estimates between manually and automatically measured AIFs. Second, this dissertation presents an automated method for segmenting the myocardium from MBF maps, making segmental analysis faster and easier to achieve. The proposed method employs active contours for myocardial segmentation, and landmark detection for the anchoring of sector-wise analysis. These methods were validated in a group of 91 clinical perfusion studies against a manual reference standard. The proposed method processed 100% of the studies successfully and results agreed with the manual reference standard, both in terms of segmented area and measurements from sector-wise analysis. Together, these automated methods form a fully automatic MBF quantification pipeline for first-pass contrast-enhanced myocardial perfusion imaging. These advancements make the modality more readily available and applicable to a larger number of patients and centers throughout the field.


Image Processing in Radiation Therapy

Image Processing in Radiation Therapy

Author: Kristy K. Brock

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 269

ISBN-13: 1439830185

DOWNLOAD EBOOK

Images from CT, MRI, PET, and other medical instrumentation have become central to the radiotherapy process in the past two decades, thus requiring medical physicists, clinicians, dosimetrists, radiation therapists, and trainees to integrate and segment these images efficiently and accurately in a clinical environment. Image Processing in Radiation


Book Synopsis Image Processing in Radiation Therapy by : Kristy K. Brock

Download or read book Image Processing in Radiation Therapy written by Kristy K. Brock and published by CRC Press. This book was released on 2016-04-19 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Images from CT, MRI, PET, and other medical instrumentation have become central to the radiotherapy process in the past two decades, thus requiring medical physicists, clinicians, dosimetrists, radiation therapists, and trainees to integrate and segment these images efficiently and accurately in a clinical environment. Image Processing in Radiation


Improved Signal and Image Interpolation in Biomedical Applications: The Case of Magnetic Resonance Imaging (MRI)

Improved Signal and Image Interpolation in Biomedical Applications: The Case of Magnetic Resonance Imaging (MRI)

Author: Ciulla, Carlo

Publisher: IGI Global

Published: 2009-03-31

Total Pages: 640

ISBN-13: 1605662038

DOWNLOAD EBOOK

"This book presents novel concepts supported through mathematics to create unique theories related to interpolation"--Provided by publisher.


Book Synopsis Improved Signal and Image Interpolation in Biomedical Applications: The Case of Magnetic Resonance Imaging (MRI) by : Ciulla, Carlo

Download or read book Improved Signal and Image Interpolation in Biomedical Applications: The Case of Magnetic Resonance Imaging (MRI) written by Ciulla, Carlo and published by IGI Global. This book was released on 2009-03-31 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book presents novel concepts supported through mathematics to create unique theories related to interpolation"--Provided by publisher.


Signal Processing for Magnetic Resonance Imaging and Spectroscopy

Signal Processing for Magnetic Resonance Imaging and Spectroscopy

Author: Hong Yan

Publisher: CRC Press

Published: 2002-02-20

Total Pages: 676

ISBN-13: 9780203908785

DOWNLOAD EBOOK

This reference/text contains the latest signal processing techniques in magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) for more efficient clinical diagnoses-providing ready-to-use algorithms for image segmentation and analysis, reconstruction and visualization, and removal of distortions and artifacts for increased detec


Book Synopsis Signal Processing for Magnetic Resonance Imaging and Spectroscopy by : Hong Yan

Download or read book Signal Processing for Magnetic Resonance Imaging and Spectroscopy written by Hong Yan and published by CRC Press. This book was released on 2002-02-20 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference/text contains the latest signal processing techniques in magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) for more efficient clinical diagnoses-providing ready-to-use algorithms for image segmentation and analysis, reconstruction and visualization, and removal of distortions and artifacts for increased detec


Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging

Author: Zhi-Pei Liang

Publisher: Wiley-IEEE Press

Published: 2000

Total Pages: 442

ISBN-13:

DOWNLOAD EBOOK

In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.


Book Synopsis Principles of Magnetic Resonance Imaging by : Zhi-Pei Liang

Download or read book Principles of Magnetic Resonance Imaging written by Zhi-Pei Liang and published by Wiley-IEEE Press. This book was released on 2000 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.