Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Author: Moussa Labbadi

Publisher: Springer Nature

Published: 2021-09-14

Total Pages: 263

ISBN-13: 3030810143

DOWNLOAD EBOOK

This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.


Book Synopsis Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle by : Moussa Labbadi

Download or read book Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle written by Moussa Labbadi and published by Springer Nature. This book was released on 2021-09-14 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.


Nonlinear and Fault-tolerant Control Techniques for a Quadrotor Unmanned Aerial Vehicle

Nonlinear and Fault-tolerant Control Techniques for a Quadrotor Unmanned Aerial Vehicle

Author: Tong Li

Publisher:

Published: 2011

Total Pages: 176

ISBN-13:

DOWNLOAD EBOOK

Unmanned Aerial Vehicles (UAVs) have become more and more popular, and how to control them has become crucial. Although there are many different control methods that can be applied to the control of UAVs, nonlinear control techniques are more practical since the nonlinear features of most UAVs. In this thesis, as the first main contribution, three widely used nonlinear control techniques including Feedback Linearization Control (FLC), Sliding Mode Control (SMC), and Backstepping Control (BSC) are discussed, investigated, and designed in details and flight-tested on a unique quadrotor UAV (Qball-X4) test-bed available at the Networked Autonomous Vehicles (NAV) Lab in Concordia University. Each of these three control algorithms has its own features. The advantages and disadvantages are revealed through both simulation and experimental tests. Sliding mode control is well known for its capability of handling uncertainty, and is expected to be a robust controller on Qball-X4 UAV. Feedback linearization control and backstepping control are considered a bit weaker than sliding mode control. A comparison of these three controllers is carried out in both theoretical analysis and experimental results under same fault-free flight conditions. Testing results and comparison show the different features of different control methods, and provide a view on how to choose controller under a specific condition. Besides, safety and reliability of UAVs have been and will always be a critical issue in the aviation industry. Fault-Tolerant Control (FTC) has played an extremely important role towards UAVs' safety and reliability and the safety of group people if an unexpected crash occurred due to faults/damages of UAVs. Therefore, FTC has been a very active and quickly growing research and development field for UAVs and other safety-critical systems. Based on the use of sliding mode control technique, referred to as Fault-Tolerant SMC (FT-SMC) have been investigated, implemented, flight-tested and compared in the Qball-X4 test-bed and also simulation environment in both passive and active framework of FTC in the presence of different actuator faults/damages, as the second main contribution of this thesis work.


Book Synopsis Nonlinear and Fault-tolerant Control Techniques for a Quadrotor Unmanned Aerial Vehicle by : Tong Li

Download or read book Nonlinear and Fault-tolerant Control Techniques for a Quadrotor Unmanned Aerial Vehicle written by Tong Li and published by . This book was released on 2011 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned Aerial Vehicles (UAVs) have become more and more popular, and how to control them has become crucial. Although there are many different control methods that can be applied to the control of UAVs, nonlinear control techniques are more practical since the nonlinear features of most UAVs. In this thesis, as the first main contribution, three widely used nonlinear control techniques including Feedback Linearization Control (FLC), Sliding Mode Control (SMC), and Backstepping Control (BSC) are discussed, investigated, and designed in details and flight-tested on a unique quadrotor UAV (Qball-X4) test-bed available at the Networked Autonomous Vehicles (NAV) Lab in Concordia University. Each of these three control algorithms has its own features. The advantages and disadvantages are revealed through both simulation and experimental tests. Sliding mode control is well known for its capability of handling uncertainty, and is expected to be a robust controller on Qball-X4 UAV. Feedback linearization control and backstepping control are considered a bit weaker than sliding mode control. A comparison of these three controllers is carried out in both theoretical analysis and experimental results under same fault-free flight conditions. Testing results and comparison show the different features of different control methods, and provide a view on how to choose controller under a specific condition. Besides, safety and reliability of UAVs have been and will always be a critical issue in the aviation industry. Fault-Tolerant Control (FTC) has played an extremely important role towards UAVs' safety and reliability and the safety of group people if an unexpected crash occurred due to faults/damages of UAVs. Therefore, FTC has been a very active and quickly growing research and development field for UAVs and other safety-critical systems. Based on the use of sliding mode control technique, referred to as Fault-Tolerant SMC (FT-SMC) have been investigated, implemented, flight-tested and compared in the Qball-X4 test-bed and also simulation environment in both passive and active framework of FTC in the presence of different actuator faults/damages, as the second main contribution of this thesis work.


Dynamic Modeling and Robust Nonlinear Control of Unmanned Quadrotor Vehicle

Dynamic Modeling and Robust Nonlinear Control of Unmanned Quadrotor Vehicle

Author: Amr Mohamed Elhennawy

Publisher:

Published: 2018

Total Pages: 238

ISBN-13:

DOWNLOAD EBOOK

Abstract: It is not easy to control a quadrotor due to its highly nonlinear dynamics, variable coupling and model uncertainties. The underactuation property of the quadrotor also poses another degree of complexity to the model due to the limited availability of control techniques that can be applied to underactuated systems. This thesis presents the development of mathematical modeling, control techniques, simulation and real-time testing on a developed quadrotor as an unmanned aerial vehicle. Modeling of the dynamic system of a quadrotor including the motor dynamics is carried out using Newton-Euler mechanics and state space representation is obtained. Using this model a second-order Sliding Mode Control (SMC) is developed as a nonlinear robust control technique. For the SMC development, quadrotor system is divided into two subsystems, One represents the fully actuated degrees of freedom and the other one represents the underactuated degrees of freedom. The aim of the proposed flight controller is to achieve asymptotic position and attitude tracking of the two subsystems by driving the tracking errors to zero to achieve the required tracking performance. Tackling of chattering problem associated with SMC is introduced. Using the developed mathematical model and the developed two control techniques as linear and nonlinear approaches: the Proportional plus Derivative (PD)and SMC, simulation testing is conducted with and without the presence of external disturbances representing weight variation. Multiple simulations testing are performed to ensure the adequacy of the proposed control techniques using MATLAB and Simulink. Detailed discussion on the results of each control technique and comparison are presented with elaborate consideration of the robustness against weight variation. The simulation results demonstrate the ability of the SMC to drive the vehicle to stability and achieve the desired performance characteristics. . Finally, hardware design of a quadrotor has been developed and implemented with considerations on the hardware challenges are presented. Results of real-time ght tests using the two developed control techniques are presented and compared with that of the simulation results and it shows reliable performance of the nonlinear robust SMC controller. Flight tests results came consistent with the simulation results in terms of tracking performance, robustness and actuators e orts. Hardships in the implementation are mentioned and recommendations and future work are proposed.


Book Synopsis Dynamic Modeling and Robust Nonlinear Control of Unmanned Quadrotor Vehicle by : Amr Mohamed Elhennawy

Download or read book Dynamic Modeling and Robust Nonlinear Control of Unmanned Quadrotor Vehicle written by Amr Mohamed Elhennawy and published by . This book was released on 2018 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: It is not easy to control a quadrotor due to its highly nonlinear dynamics, variable coupling and model uncertainties. The underactuation property of the quadrotor also poses another degree of complexity to the model due to the limited availability of control techniques that can be applied to underactuated systems. This thesis presents the development of mathematical modeling, control techniques, simulation and real-time testing on a developed quadrotor as an unmanned aerial vehicle. Modeling of the dynamic system of a quadrotor including the motor dynamics is carried out using Newton-Euler mechanics and state space representation is obtained. Using this model a second-order Sliding Mode Control (SMC) is developed as a nonlinear robust control technique. For the SMC development, quadrotor system is divided into two subsystems, One represents the fully actuated degrees of freedom and the other one represents the underactuated degrees of freedom. The aim of the proposed flight controller is to achieve asymptotic position and attitude tracking of the two subsystems by driving the tracking errors to zero to achieve the required tracking performance. Tackling of chattering problem associated with SMC is introduced. Using the developed mathematical model and the developed two control techniques as linear and nonlinear approaches: the Proportional plus Derivative (PD)and SMC, simulation testing is conducted with and without the presence of external disturbances representing weight variation. Multiple simulations testing are performed to ensure the adequacy of the proposed control techniques using MATLAB and Simulink. Detailed discussion on the results of each control technique and comparison are presented with elaborate consideration of the robustness against weight variation. The simulation results demonstrate the ability of the SMC to drive the vehicle to stability and achieve the desired performance characteristics. . Finally, hardware design of a quadrotor has been developed and implemented with considerations on the hardware challenges are presented. Results of real-time ght tests using the two developed control techniques are presented and compared with that of the simulation results and it shows reliable performance of the nonlinear robust SMC controller. Flight tests results came consistent with the simulation results in terms of tracking performance, robustness and actuators e orts. Hardships in the implementation are mentioned and recommendations and future work are proposed.


Robust Discrete-Time Flight Control of UAV with External Disturbances

Robust Discrete-Time Flight Control of UAV with External Disturbances

Author: Shuyi Shao

Publisher: Springer Nature

Published: 2020-09-26

Total Pages: 207

ISBN-13: 3030579573

DOWNLOAD EBOOK

This book studies selected discrete-time flight control schemes for fixed-wing unmanned aerial vehicle (UAV) systems in the presence of system uncertainties, external disturbances and input saturation. The main contributions of this book for UAV systems are as follows: (i) the proposed integer-order discrete-time control schemes are based on the designed discrete-time disturbance observers (DTDOs) and the neural network (NN); and (ii) the fractional-order discrete-time control schemes are developed by using the fractional-order calculus theory, the NN and the DTDOs. The book offers readers a good understanding of how to establish discrete-time tracking control schemes for fixed-wing UAV systems subject to system uncertainties, external wind disturbances and input saturation. It represents a valuable reference guide for academic research on uncertain UAV systems, and can also support advanced / Ph.D. studies on control theory and engineering.


Book Synopsis Robust Discrete-Time Flight Control of UAV with External Disturbances by : Shuyi Shao

Download or read book Robust Discrete-Time Flight Control of UAV with External Disturbances written by Shuyi Shao and published by Springer Nature. This book was released on 2020-09-26 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies selected discrete-time flight control schemes for fixed-wing unmanned aerial vehicle (UAV) systems in the presence of system uncertainties, external disturbances and input saturation. The main contributions of this book for UAV systems are as follows: (i) the proposed integer-order discrete-time control schemes are based on the designed discrete-time disturbance observers (DTDOs) and the neural network (NN); and (ii) the fractional-order discrete-time control schemes are developed by using the fractional-order calculus theory, the NN and the DTDOs. The book offers readers a good understanding of how to establish discrete-time tracking control schemes for fixed-wing UAV systems subject to system uncertainties, external wind disturbances and input saturation. It represents a valuable reference guide for academic research on uncertain UAV systems, and can also support advanced / Ph.D. studies on control theory and engineering.


Adaptive Hybrid Control of Quadrotor Drones

Adaptive Hybrid Control of Quadrotor Drones

Author: Nihal Dalwadi

Publisher: Springer Nature

Published: 2023-03-01

Total Pages: 188

ISBN-13: 9811997446

DOWNLOAD EBOOK

This book discusses the dynamics of a tail-sitter quadrotor and biplane quadrotor-type hybrid unmanned aerial vehicles (UAVs) and, based on it, various nonlinear controllers design like backstepping control (BSC), ITSMC (Integral Terminal Sliding Mode Control), and hybrid controller (BSC + ITSMC). It discusses single and multiple observer-based control strategies to handle external disturbances like wind gusts and estimate states. It covers the dynamics of slung load with a biplane quadrotor and a control architecture to handle the effect of partial rotor failure with wind gusts acting on it. An anti-swing control to prevent damage to the slung load and a deflecting surface-based total rotor failure compensation strategy to prevent damage to the biplane quadrotor are also discussed in this book. The monograph will be helpful for undergraduate and post-graduate students as well as researchers in their advanced studies.


Book Synopsis Adaptive Hybrid Control of Quadrotor Drones by : Nihal Dalwadi

Download or read book Adaptive Hybrid Control of Quadrotor Drones written by Nihal Dalwadi and published by Springer Nature. This book was released on 2023-03-01 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the dynamics of a tail-sitter quadrotor and biplane quadrotor-type hybrid unmanned aerial vehicles (UAVs) and, based on it, various nonlinear controllers design like backstepping control (BSC), ITSMC (Integral Terminal Sliding Mode Control), and hybrid controller (BSC + ITSMC). It discusses single and multiple observer-based control strategies to handle external disturbances like wind gusts and estimate states. It covers the dynamics of slung load with a biplane quadrotor and a control architecture to handle the effect of partial rotor failure with wind gusts acting on it. An anti-swing control to prevent damage to the slung load and a deflecting surface-based total rotor failure compensation strategy to prevent damage to the biplane quadrotor are also discussed in this book. The monograph will be helpful for undergraduate and post-graduate students as well as researchers in their advanced studies.


Robust Formation Control for Multiple Unmanned Aerial Vehicles

Robust Formation Control for Multiple Unmanned Aerial Vehicles

Author: Hao Liu

Publisher: CRC Press

Published: 2022-12-01

Total Pages: 180

ISBN-13: 1000788539

DOWNLOAD EBOOK

This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.


Book Synopsis Robust Formation Control for Multiple Unmanned Aerial Vehicles by : Hao Liu

Download or read book Robust Formation Control for Multiple Unmanned Aerial Vehicles written by Hao Liu and published by CRC Press. This book was released on 2022-12-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.


Unmanned Aerial Systems

Unmanned Aerial Systems

Author: Anis Koubaa

Publisher: Academic Press

Published: 2021-01-21

Total Pages: 652

ISBN-13: 0128202777

DOWNLOAD EBOOK

Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. Covers some of the most innovative approaches to drones Provides the latest state-of-the-art research and development surrounding unmanned aerial systems Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area


Book Synopsis Unmanned Aerial Systems by : Anis Koubaa

Download or read book Unmanned Aerial Systems written by Anis Koubaa and published by Academic Press. This book was released on 2021-01-21 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. Covers some of the most innovative approaches to drones Provides the latest state-of-the-art research and development surrounding unmanned aerial systems Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area


Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties

Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties

Author: Michail G. Michailidis

Publisher: Springer Nature

Published: 2020-02-21

Total Pages: 119

ISBN-13: 3030407160

DOWNLOAD EBOOK

This book introduces a comprehensive and mathematically rigorous controller design for families of nonlinear systems with time-varying parameters and unstructured uncertainties. Although the presented methodology is general, the specific family of systems considered is the latest, NextGen, unconventional fixed-wing unmanned aircraft with circulation control or morphing wings, or a combination of both. The approach considers various sources of model and parameter uncertainty, while the controller design depends not on a nominal plant model, but instead on a family of admissible plants. In contrast to existing controller designs that consider multiple models and multiple controllers, the proposed approach is based on the ‘one controller fits all models’ within the unstructured uncertainty interval. The book presents a modeling-based analysis and synthesis approach with additive uncertainty weighting functions for accurate realization of the candidate systems. This differs significantly from existing designs in that it is capable of handling time-varying characteristics. This research monograph is suitable for scientists, engineers, researchers and graduate students with a background in control system theory who are interested in complex engineering nonlinear systems.


Book Synopsis Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties by : Michail G. Michailidis

Download or read book Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties written by Michail G. Michailidis and published by Springer Nature. This book was released on 2020-02-21 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a comprehensive and mathematically rigorous controller design for families of nonlinear systems with time-varying parameters and unstructured uncertainties. Although the presented methodology is general, the specific family of systems considered is the latest, NextGen, unconventional fixed-wing unmanned aircraft with circulation control or morphing wings, or a combination of both. The approach considers various sources of model and parameter uncertainty, while the controller design depends not on a nominal plant model, but instead on a family of admissible plants. In contrast to existing controller designs that consider multiple models and multiple controllers, the proposed approach is based on the ‘one controller fits all models’ within the unstructured uncertainty interval. The book presents a modeling-based analysis and synthesis approach with additive uncertainty weighting functions for accurate realization of the candidate systems. This differs significantly from existing designs in that it is capable of handling time-varying characteristics. This research monograph is suitable for scientists, engineers, researchers and graduate students with a background in control system theory who are interested in complex engineering nonlinear systems.


Indoor Navigation Strategies for Aerial Autonomous Systems

Indoor Navigation Strategies for Aerial Autonomous Systems

Author: Pedro Castillo-Garcia

Publisher: Butterworth-Heinemann

Published: 2016-11-10

Total Pages: 302

ISBN-13: 0128053399

DOWNLOAD EBOOK

Indoor Navigation Strategies for Aerial Autonomous Systems presents the necessary and sufficient theoretical basis for those interested in working in unmanned aerial vehicles, providing three different approaches to mathematically represent the dynamics of an aerial vehicle. The book contains detailed information on fusion inertial measurements for orientation stabilization and its validation in flight tests, also proposing substantial theoretical and practical validation for improving the dropped or noised signals. In addition, the book contains different strategies to control and navigate aerial systems. The comprehensive information will be of interest to both researchers and practitioners working in automatic control, mechatronics, robotics, and UAVs, helping them improve research and motivating them to build a test-bed for future projects. Provides substantial information on nonlinear control approaches and their validation in flight tests Details in observer-delay schemes that can be applied in real-time Teaches how an IMU is built and how they can improve the performance of their system when applying observers or predictors Improves prototypes with tactics for proposed nonlinear schemes


Book Synopsis Indoor Navigation Strategies for Aerial Autonomous Systems by : Pedro Castillo-Garcia

Download or read book Indoor Navigation Strategies for Aerial Autonomous Systems written by Pedro Castillo-Garcia and published by Butterworth-Heinemann. This book was released on 2016-11-10 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Indoor Navigation Strategies for Aerial Autonomous Systems presents the necessary and sufficient theoretical basis for those interested in working in unmanned aerial vehicles, providing three different approaches to mathematically represent the dynamics of an aerial vehicle. The book contains detailed information on fusion inertial measurements for orientation stabilization and its validation in flight tests, also proposing substantial theoretical and practical validation for improving the dropped or noised signals. In addition, the book contains different strategies to control and navigate aerial systems. The comprehensive information will be of interest to both researchers and practitioners working in automatic control, mechatronics, robotics, and UAVs, helping them improve research and motivating them to build a test-bed for future projects. Provides substantial information on nonlinear control approaches and their validation in flight tests Details in observer-delay schemes that can be applied in real-time Teaches how an IMU is built and how they can improve the performance of their system when applying observers or predictors Improves prototypes with tactics for proposed nonlinear schemes


Robust Formation Control for Multiple Unmanned Aerial Vehicles

Robust Formation Control for Multiple Unmanned Aerial Vehicles

Author: Hao Liu (Of Beijing hang kong hang tian da xue)

Publisher:

Published: 2023

Total Pages: 0

ISBN-13: 9781032150246

DOWNLOAD EBOOK

"This book is based on the authors' recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled, parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems."--


Book Synopsis Robust Formation Control for Multiple Unmanned Aerial Vehicles by : Hao Liu (Of Beijing hang kong hang tian da xue)

Download or read book Robust Formation Control for Multiple Unmanned Aerial Vehicles written by Hao Liu (Of Beijing hang kong hang tian da xue) and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is based on the authors' recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled, parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems."--