Algebraic and Geometric Ideas in the Theory of Discrete Optimization

Algebraic and Geometric Ideas in the Theory of Discrete Optimization

Author: Jesus A. De Loera

Publisher: SIAM

Published: 2013-01-31

Total Pages: 320

ISBN-13: 1611972434

DOWNLOAD EBOOK

In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.


Book Synopsis Algebraic and Geometric Ideas in the Theory of Discrete Optimization by : Jesus A. De Loera

Download or read book Algebraic and Geometric Ideas in the Theory of Discrete Optimization written by Jesus A. De Loera and published by SIAM. This book was released on 2013-01-31 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.


Semidefinite Optimization and Convex Algebraic Geometry

Semidefinite Optimization and Convex Algebraic Geometry

Author: Grigoriy Blekherman

Publisher: SIAM

Published: 2013-03-21

Total Pages: 487

ISBN-13: 1611972280

DOWNLOAD EBOOK

An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.


Book Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman

Download or read book Semidefinite Optimization and Convex Algebraic Geometry written by Grigoriy Blekherman and published by SIAM. This book was released on 2013-03-21 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.


Discrete Geometry and Optimization

Discrete Geometry and Optimization

Author: Károly Bezdek

Publisher: Springer Science & Business Media

Published: 2013-07-09

Total Pages: 341

ISBN-13: 3319002007

DOWNLOAD EBOOK

​Optimization has long been a source of both inspiration and applications for geometers, and conversely, discrete and convex geometry have provided the foundations for many optimization techniques, leading to a rich interplay between these subjects. The purpose of the Workshop on Discrete Geometry, the Conference on Discrete Geometry and Optimization, and the Workshop on Optimization, held in September 2011 at the Fields Institute, Toronto, was to further stimulate the interaction between geometers and optimizers. This volume reflects the interplay between these areas. The inspiring Fejes Tóth Lecture Series, delivered by Thomas Hales of the University of Pittsburgh, exemplified this approach. While these fields have recently witnessed a lot of activity and successes, many questions remain open. For example, Fields medalist Stephen Smale stated that the question of the existence of a strongly polynomial time algorithm for linear optimization is one of the most important unsolved problems at the beginning of the 21st century. The broad range of topics covered in this volume demonstrates the many recent and fruitful connections between different approaches, and features novel results and state-of-the-art surveys as well as open problems.


Book Synopsis Discrete Geometry and Optimization by : Károly Bezdek

Download or read book Discrete Geometry and Optimization written by Károly Bezdek and published by Springer Science & Business Media. This book was released on 2013-07-09 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​Optimization has long been a source of both inspiration and applications for geometers, and conversely, discrete and convex geometry have provided the foundations for many optimization techniques, leading to a rich interplay between these subjects. The purpose of the Workshop on Discrete Geometry, the Conference on Discrete Geometry and Optimization, and the Workshop on Optimization, held in September 2011 at the Fields Institute, Toronto, was to further stimulate the interaction between geometers and optimizers. This volume reflects the interplay between these areas. The inspiring Fejes Tóth Lecture Series, delivered by Thomas Hales of the University of Pittsburgh, exemplified this approach. While these fields have recently witnessed a lot of activity and successes, many questions remain open. For example, Fields medalist Stephen Smale stated that the question of the existence of a strongly polynomial time algorithm for linear optimization is one of the most important unsolved problems at the beginning of the 21st century. The broad range of topics covered in this volume demonstrates the many recent and fruitful connections between different approaches, and features novel results and state-of-the-art surveys as well as open problems.


Geometric Methods and Optimization Problems

Geometric Methods and Optimization Problems

Author: Vladimir Boltyanski

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 438

ISBN-13: 1461553199

DOWNLOAD EBOOK

VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines.


Book Synopsis Geometric Methods and Optimization Problems by : Vladimir Boltyanski

Download or read book Geometric Methods and Optimization Problems written by Vladimir Boltyanski and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines.


Discrete Geometry and Algebraic Combinatorics

Discrete Geometry and Algebraic Combinatorics

Author: Alexander Barg

Publisher: American Mathematical Society

Published: 2014-08-28

Total Pages: 202

ISBN-13: 1470409054

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS Special Session on Discrete Geometry and Algebraic Combinatorics held on January 11, 2013, in San Diego, California. The collection of articles in this volume is devoted to packings of metric spaces and related questions, and contains new results as well as surveys of some areas of discrete geometry. This volume consists of papers on combinatorics of transportation polytopes, including results on the diameter of graphs of such polytopes; the generalized Steiner problem and related topics of the minimal fillings theory; a survey of distance graphs and graphs of diameters, and a group of papers on applications of algebraic combinatorics to packings of metric spaces including sphere packings and topics in coding theory. In particular, this volume presents a new approach to duality in sphere packing based on the Poisson summation formula, applications of semidefinite programming to spherical codes and equiangular lines, new results in list decoding of a family of algebraic codes, and constructions of bent and semi-bent functions.


Book Synopsis Discrete Geometry and Algebraic Combinatorics by : Alexander Barg

Download or read book Discrete Geometry and Algebraic Combinatorics written by Alexander Barg and published by American Mathematical Society. This book was released on 2014-08-28 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Discrete Geometry and Algebraic Combinatorics held on January 11, 2013, in San Diego, California. The collection of articles in this volume is devoted to packings of metric spaces and related questions, and contains new results as well as surveys of some areas of discrete geometry. This volume consists of papers on combinatorics of transportation polytopes, including results on the diameter of graphs of such polytopes; the generalized Steiner problem and related topics of the minimal fillings theory; a survey of distance graphs and graphs of diameters, and a group of papers on applications of algebraic combinatorics to packings of metric spaces including sphere packings and topics in coding theory. In particular, this volume presents a new approach to duality in sphere packing based on the Poisson summation formula, applications of semidefinite programming to spherical codes and equiangular lines, new results in list decoding of a family of algebraic codes, and constructions of bent and semi-bent functions.


Digital and Discrete Geometry

Digital and Discrete Geometry

Author: Li M. Chen

Publisher: Springer

Published: 2014-12-12

Total Pages: 325

ISBN-13: 3319120999

DOWNLOAD EBOOK

This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.


Book Synopsis Digital and Discrete Geometry by : Li M. Chen

Download or read book Digital and Discrete Geometry written by Li M. Chen and published by Springer. This book was released on 2014-12-12 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.


Problems and Solutions for Integer and Combinatorial Optimization

Problems and Solutions for Integer and Combinatorial Optimization

Author: Mustafa Ç. Pınar

Publisher: SIAM

Published: 2023-11-10

Total Pages: 148

ISBN-13: 1611977762

DOWNLOAD EBOOK

The only book offering solved exercises for integer and combinatorial optimization, this book contains 102 classroom tested problems of varying scope and difficulty chosen from a plethora of topics and applications. It has an associated website containing additional problems, lecture notes, and suggested readings. Topics covered include modeling capabilities of integer variables, the Branch-and-Bound method, cutting planes, network optimization models, shortest path problems, optimum tree problems, maximal cardinality matching problems, matching-covering duality, symmetric and asymmetric TSP, 2-matching and 1-tree relaxations, VRP formulations, and dynamic programming. Problems and Solutions for Integer and Combinatorial Optimization: Building Skills in Discrete Optimization is meant for undergraduate and beginning graduate students in mathematics, computer science, and engineering to use for self-study and for instructors to use in conjunction with other course material and when teaching courses in discrete optimization.


Book Synopsis Problems and Solutions for Integer and Combinatorial Optimization by : Mustafa Ç. Pınar

Download or read book Problems and Solutions for Integer and Combinatorial Optimization written by Mustafa Ç. Pınar and published by SIAM. This book was released on 2023-11-10 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only book offering solved exercises for integer and combinatorial optimization, this book contains 102 classroom tested problems of varying scope and difficulty chosen from a plethora of topics and applications. It has an associated website containing additional problems, lecture notes, and suggested readings. Topics covered include modeling capabilities of integer variables, the Branch-and-Bound method, cutting planes, network optimization models, shortest path problems, optimum tree problems, maximal cardinality matching problems, matching-covering duality, symmetric and asymmetric TSP, 2-matching and 1-tree relaxations, VRP formulations, and dynamic programming. Problems and Solutions for Integer and Combinatorial Optimization: Building Skills in Discrete Optimization is meant for undergraduate and beginning graduate students in mathematics, computer science, and engineering to use for self-study and for instructors to use in conjunction with other course material and when teaching courses in discrete optimization.


An Introduction to Convexity, Optimization, and Algorithms

An Introduction to Convexity, Optimization, and Algorithms

Author: Heinz H. Bauschke

Publisher: SIAM

Published: 2023-12-20

Total Pages: 192

ISBN-13: 1611977800

DOWNLOAD EBOOK

This concise, self-contained volume introduces convex analysis and optimization algorithms, with an emphasis on bridging the two areas. It explores cutting-edge algorithms—such as the proximal gradient, Douglas–Rachford, Peaceman–Rachford, and FISTA—that have applications in machine learning, signal processing, image reconstruction, and other fields. An Introduction to Convexity, Optimization, and Algorithms contains algorithms illustrated by Julia examples and more than 200 exercises that enhance the reader’s understanding of the topic. Clear explanations and step-by-step algorithmic descriptions facilitate self-study for individuals looking to enhance their expertise in convex analysis and optimization. Designed for courses in convex analysis, numerical optimization, and related subjects, this volume is intended for undergraduate and graduate students in mathematics, computer science, and engineering. Its concise length makes it ideal for a one-semester course. Researchers and professionals in applied areas, such as data science and machine learning, will find insights relevant to their work.


Book Synopsis An Introduction to Convexity, Optimization, and Algorithms by : Heinz H. Bauschke

Download or read book An Introduction to Convexity, Optimization, and Algorithms written by Heinz H. Bauschke and published by SIAM. This book was released on 2023-12-20 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise, self-contained volume introduces convex analysis and optimization algorithms, with an emphasis on bridging the two areas. It explores cutting-edge algorithms—such as the proximal gradient, Douglas–Rachford, Peaceman–Rachford, and FISTA—that have applications in machine learning, signal processing, image reconstruction, and other fields. An Introduction to Convexity, Optimization, and Algorithms contains algorithms illustrated by Julia examples and more than 200 exercises that enhance the reader’s understanding of the topic. Clear explanations and step-by-step algorithmic descriptions facilitate self-study for individuals looking to enhance their expertise in convex analysis and optimization. Designed for courses in convex analysis, numerical optimization, and related subjects, this volume is intended for undergraduate and graduate students in mathematics, computer science, and engineering. Its concise length makes it ideal for a one-semester course. Researchers and professionals in applied areas, such as data science and machine learning, will find insights relevant to their work.


Integer Programming and Combinatorial Optimization

Integer Programming and Combinatorial Optimization

Author: Jon Lee

Publisher: Springer

Published: 2014-05-17

Total Pages: 429

ISBN-13: 3319075578

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014, held in Bonn, Germany, in June 2014. The 34 full papers presented were carefully reviewed and selected from 143 submissions. The conference is a forum for researchers and practitioners working on various aspects of integer programming and combinatorial optimization. The aim is to present recent developments in theory, computation, and applications in these areas. The scope of IPCO is viewed in a broad sense, to include algorithmic and structural results in integer programming and combinatorial optimization as well as revealing computational studies and novel applications of discrete optimization to practical problems.


Book Synopsis Integer Programming and Combinatorial Optimization by : Jon Lee

Download or read book Integer Programming and Combinatorial Optimization written by Jon Lee and published by Springer. This book was released on 2014-05-17 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014, held in Bonn, Germany, in June 2014. The 34 full papers presented were carefully reviewed and selected from 143 submissions. The conference is a forum for researchers and practitioners working on various aspects of integer programming and combinatorial optimization. The aim is to present recent developments in theory, computation, and applications in these areas. The scope of IPCO is viewed in a broad sense, to include algorithmic and structural results in integer programming and combinatorial optimization as well as revealing computational studies and novel applications of discrete optimization to practical problems.


Optimization Over Integers

Optimization Over Integers

Author: Dimitris Bertsimas

Publisher:

Published: 2005

Total Pages: 602

ISBN-13: 9780975914625

DOWNLOAD EBOOK


Book Synopsis Optimization Over Integers by : Dimitris Bertsimas

Download or read book Optimization Over Integers written by Dimitris Bertsimas and published by . This book was released on 2005 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: