An experimental and numerical study of low salinity effects on the oil recovery of carbonate limestone samples

An experimental and numerical study of low salinity effects on the oil recovery of carbonate limestone samples

Author: Felix Feldmann

Publisher: Cuvillier Verlag

Published: 2020-03-02

Total Pages: 254

ISBN-13: 3736961766

DOWNLOAD EBOOK

Low-salinity waterflooding is a relatively simple and cheap Enhanced oil recovery technique in which the salinity of the injected water is optimized (by desalination and/or modification) to improve oil recovery over conventional waterflooding. The presented study combines spontaneous imbibition, centrifuge method, unsteady state coreflooding and zeta potential experiments to investigate low-salinity effects in carbonate limestones samples. Compared to Formation-water and Sea-water, Diluted-sea-water caused the significantly highest spontaneous oil recovery. Moreover, the imbibition capillary pressure curves are characterized by an increasing water-wetting tendency and a residual oil saturation reduction, as the salinity of the imbibing brines decreases in comparison to Formation-water. The unsteady state corefloodings resulted in the highest secondary oil recovery when Diluted-sea-water was used as injection water. Based on the open-source C++ simulator Dumux, the study developed a numerical centrifuge and coreflooding model to history match the experimental data. The numerically derived capillary pressure and relative permeability data confirm a correlation between the system’s salinity, wettability, oil recovery and residual oil saturation.


Book Synopsis An experimental and numerical study of low salinity effects on the oil recovery of carbonate limestone samples by : Felix Feldmann

Download or read book An experimental and numerical study of low salinity effects on the oil recovery of carbonate limestone samples written by Felix Feldmann and published by Cuvillier Verlag. This book was released on 2020-03-02 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-salinity waterflooding is a relatively simple and cheap Enhanced oil recovery technique in which the salinity of the injected water is optimized (by desalination and/or modification) to improve oil recovery over conventional waterflooding. The presented study combines spontaneous imbibition, centrifuge method, unsteady state coreflooding and zeta potential experiments to investigate low-salinity effects in carbonate limestones samples. Compared to Formation-water and Sea-water, Diluted-sea-water caused the significantly highest spontaneous oil recovery. Moreover, the imbibition capillary pressure curves are characterized by an increasing water-wetting tendency and a residual oil saturation reduction, as the salinity of the imbibing brines decreases in comparison to Formation-water. The unsteady state corefloodings resulted in the highest secondary oil recovery when Diluted-sea-water was used as injection water. Based on the open-source C++ simulator Dumux, the study developed a numerical centrifuge and coreflooding model to history match the experimental data. The numerically derived capillary pressure and relative permeability data confirm a correlation between the system’s salinity, wettability, oil recovery and residual oil saturation.


Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs

Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs

Author: Emad W. Al Shalabi

Publisher: Emad W. Al Shalabi

Published: 2014

Total Pages: 697

ISBN-13:

DOWNLOAD EBOOK

The low salinity water injection technique (LSWI) has become one of the important research topics in the oil industry because of its possible advantages for improving oil recovery. Several mechanisms describing the LSWI process have been suggested in the literature; however, there is no consensus on a single main mechanism for the low salinity effect on oil recovery. As a result of the latter, there are few models for LSWI and especially for carbonates due to their heterogeneity and complexity. In this research, we proposed a systematic approach for modeling the LSWI effect on oil recovery from carbonates by proposing six different methods for history matching and three different LSWI models for the UTCHEM simulator, empirical, fundamental, and mechanistic LSWI models. The empirical LSWI model uses contact angle measurements and injected water salinity. The fundamental LSWI model captures the effect of LSWI through the trapping number. In the mechanistic LSWI model, we include the effect of different geochemical reactions through Gibbs free energy. Moreover, field-scale predictions of LSWI were performed and followed by a sensitivity analysis for the most influential design parameters using design of experiment (DoE). The LSWI technique was also optimized using the response surface methodology (RSM) where a response surface was built. Also, we moved a step further by investigating the combined effect of injecting low salinity water and carbon dioxide on oil recovery from carbonates through modeling of the process and numerical simulations using the UTCOMP simulator. The analysis showed that CO2 is the main controller of the residual oil saturation whereas the low salinity water boosts the oil production rate by increasing the oil relative permeability through wettability alteration towards a more water-wet state. In addition, geochemical modeling of LSWI only and the combined effect of LSWI and CO2 were performed using both UTCHEM and PHREEQC upon which the geochemical model in UTCHEM was modified and validated against PHREEQC. Based on the geochemical interpretation of the LSWI technique, we believe that wettability alteration is the main contributor to the LSWI effect on oil recovery from carbonates by anhydrite dissolution and surface charge change through pH exceeding the point of zero charge.


Book Synopsis Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs by : Emad W. Al Shalabi

Download or read book Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs written by Emad W. Al Shalabi and published by Emad W. Al Shalabi. This book was released on 2014 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: The low salinity water injection technique (LSWI) has become one of the important research topics in the oil industry because of its possible advantages for improving oil recovery. Several mechanisms describing the LSWI process have been suggested in the literature; however, there is no consensus on a single main mechanism for the low salinity effect on oil recovery. As a result of the latter, there are few models for LSWI and especially for carbonates due to their heterogeneity and complexity. In this research, we proposed a systematic approach for modeling the LSWI effect on oil recovery from carbonates by proposing six different methods for history matching and three different LSWI models for the UTCHEM simulator, empirical, fundamental, and mechanistic LSWI models. The empirical LSWI model uses contact angle measurements and injected water salinity. The fundamental LSWI model captures the effect of LSWI through the trapping number. In the mechanistic LSWI model, we include the effect of different geochemical reactions through Gibbs free energy. Moreover, field-scale predictions of LSWI were performed and followed by a sensitivity analysis for the most influential design parameters using design of experiment (DoE). The LSWI technique was also optimized using the response surface methodology (RSM) where a response surface was built. Also, we moved a step further by investigating the combined effect of injecting low salinity water and carbon dioxide on oil recovery from carbonates through modeling of the process and numerical simulations using the UTCOMP simulator. The analysis showed that CO2 is the main controller of the residual oil saturation whereas the low salinity water boosts the oil production rate by increasing the oil relative permeability through wettability alteration towards a more water-wet state. In addition, geochemical modeling of LSWI only and the combined effect of LSWI and CO2 were performed using both UTCHEM and PHREEQC upon which the geochemical model in UTCHEM was modified and validated against PHREEQC. Based on the geochemical interpretation of the LSWI technique, we believe that wettability alteration is the main contributor to the LSWI effect on oil recovery from carbonates by anhydrite dissolution and surface charge change through pH exceeding the point of zero charge.


Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs

Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs

Author: Emad W. Al Shalabi

Publisher: Emad W. Al Shalabi

Published: 2014-10-20

Total Pages: 697

ISBN-13:

DOWNLOAD EBOOK

The low salinity water injection technique (LSWI) has become one of the important research topics in the oil industry because of its possible advantages for improving oil recovery. Several mechanisms describing the LSWI process have been suggested in the literature; however, there is no consensus on a single main mechanism for the low salinity effect on oil recovery. As a result of the latter, there are few models for LSWI and especially for carbonates due to their heterogeneity and complexity. In this research, we proposed a systematic approach for modeling the LSWI effect on oil recovery from carbonates by proposing six different methods for history matching and three different LSWI models for the UTCHEM simulator, empirical, fundamental, and mechanistic LSWI models. The empirical LSWI model uses contact angle measurements and injected water salinity. The fundamental LSWI model captures the effect of LSWI through the trapping number. In the mechanistic LSWI model, we include the effect of different geochemical reactions through Gibbs free energy. Moreover, field-scale predictions of LSWI were performed and followed by a sensitivity analysis for the most influential design parameters using design of experiment (DoE). The LSWI technique was also optimized using the response surface methodology (RSM) where a response surface was built. Also, we moved a step further by investigating the combined effect of injecting low salinity water and carbon dioxide on oil recovery from carbonates through modeling of the process and numerical simulations using the UTCOMP simulator. The analysis showed that CO2 is the main controller of the residual oil saturation whereas the low salinity water boosts the oil production rate by increasing the oil relative permeability through wettability alteration towards a more water-wet state. In addition, geochemical modeling of LSWI only and the combined effect of LSWI and CO2 were performed using both UTCHEM and PHREEQC upon which the geochemical model in UTCHEM was modified and validated against PHREEQC. Based on the geochemical interpretation of the LSWI technique, we believe that wettability alteration is the main contributor to the LSWI effect on oil recovery from carbonates by anhydrite dissolution and surface charge change through pH exceeding the point of zero charge.


Book Synopsis Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs by : Emad W. Al Shalabi

Download or read book Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs written by Emad W. Al Shalabi and published by Emad W. Al Shalabi. This book was released on 2014-10-20 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: The low salinity water injection technique (LSWI) has become one of the important research topics in the oil industry because of its possible advantages for improving oil recovery. Several mechanisms describing the LSWI process have been suggested in the literature; however, there is no consensus on a single main mechanism for the low salinity effect on oil recovery. As a result of the latter, there are few models for LSWI and especially for carbonates due to their heterogeneity and complexity. In this research, we proposed a systematic approach for modeling the LSWI effect on oil recovery from carbonates by proposing six different methods for history matching and three different LSWI models for the UTCHEM simulator, empirical, fundamental, and mechanistic LSWI models. The empirical LSWI model uses contact angle measurements and injected water salinity. The fundamental LSWI model captures the effect of LSWI through the trapping number. In the mechanistic LSWI model, we include the effect of different geochemical reactions through Gibbs free energy. Moreover, field-scale predictions of LSWI were performed and followed by a sensitivity analysis for the most influential design parameters using design of experiment (DoE). The LSWI technique was also optimized using the response surface methodology (RSM) where a response surface was built. Also, we moved a step further by investigating the combined effect of injecting low salinity water and carbon dioxide on oil recovery from carbonates through modeling of the process and numerical simulations using the UTCOMP simulator. The analysis showed that CO2 is the main controller of the residual oil saturation whereas the low salinity water boosts the oil production rate by increasing the oil relative permeability through wettability alteration towards a more water-wet state. In addition, geochemical modeling of LSWI only and the combined effect of LSWI and CO2 were performed using both UTCHEM and PHREEQC upon which the geochemical model in UTCHEM was modified and validated against PHREEQC. Based on the geochemical interpretation of the LSWI technique, we believe that wettability alteration is the main contributor to the LSWI effect on oil recovery from carbonates by anhydrite dissolution and surface charge change through pH exceeding the point of zero charge.


Petroleum Abstracts

Petroleum Abstracts

Author:

Publisher:

Published: 1992

Total Pages: 1730

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Petroleum Abstracts by :

Download or read book Petroleum Abstracts written by and published by . This book was released on 1992 with total page 1730 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Chemical Methods

Chemical Methods

Author: Abdolhossein Hemmati-Sarapardeh

Publisher: Gulf Professional Publishing

Published: 2021-11-30

Total Pages: 510

ISBN-13: 0128219327

DOWNLOAD EBOOK

Chemical Methods, a new release in the Enhanced Oil Recovery series, helps engineers focus on the latest developments in one fast-growing area. Different techniques are described in addition to the latest technologies in data mining and hybrid processes. Beginning with an introduction to chemical concepts and polymer flooding, the book then focuses on more complex content, guiding readers into newer topics involving smart water injection and ionic liquids for EOR. Supported field case studies illustrate a bridge between research and practical application, thus making the book useful for academics and practicing engineers. This series delivers a multi-volume approach that addresses the latest research on various types of EOR. Supported by a full spectrum of contributors, this book gives petroleum engineers and researchers the latest developments and field applications to drive innovation for the future of energy. Presents the latest research and practical applications specific to chemical enhanced oil recovery methods Helps users understand new research on available technology, including chemical flooding specific to unconventional reservoirs and hybrid chemical options Includes additional methods, such as data mining applications and economic and environmental considerations


Book Synopsis Chemical Methods by : Abdolhossein Hemmati-Sarapardeh

Download or read book Chemical Methods written by Abdolhossein Hemmati-Sarapardeh and published by Gulf Professional Publishing. This book was released on 2021-11-30 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Methods, a new release in the Enhanced Oil Recovery series, helps engineers focus on the latest developments in one fast-growing area. Different techniques are described in addition to the latest technologies in data mining and hybrid processes. Beginning with an introduction to chemical concepts and polymer flooding, the book then focuses on more complex content, guiding readers into newer topics involving smart water injection and ionic liquids for EOR. Supported field case studies illustrate a bridge between research and practical application, thus making the book useful for academics and practicing engineers. This series delivers a multi-volume approach that addresses the latest research on various types of EOR. Supported by a full spectrum of contributors, this book gives petroleum engineers and researchers the latest developments and field applications to drive innovation for the future of energy. Presents the latest research and practical applications specific to chemical enhanced oil recovery methods Helps users understand new research on available technology, including chemical flooding specific to unconventional reservoirs and hybrid chemical options Includes additional methods, such as data mining applications and economic and environmental considerations


Waterflooding

Waterflooding

Author: G. Paul Willhite

Publisher:

Published: 1986

Total Pages: 358

ISBN-13:

DOWNLOAD EBOOK

Waterflooding begins with understanding the basic principles of immiscible displacement, then presents a systematic procedure for designing a waterflood.


Book Synopsis Waterflooding by : G. Paul Willhite

Download or read book Waterflooding written by G. Paul Willhite and published by . This book was released on 1986 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Waterflooding begins with understanding the basic principles of immiscible displacement, then presents a systematic procedure for designing a waterflood.


Reservoir Formation Damage

Reservoir Formation Damage

Author: Faruk Civan

Publisher: Elsevier

Published: 2011-08-30

Total Pages: 1136

ISBN-13: 9780080471433

DOWNLOAD EBOOK

Reservoir Formation Damage, Second edition is a comprehensive treatise of the theory and modeling of common formation damage problems and is an important guide for research and development, laboratory testing for diagnosis and effective treatment, and tailor-fit- design of optimal strategies for mitigation of reservoir formation damage. The new edition includes field case histories and simulated scenarios demonstrating the consequences of formation damage in petroleum reservoirs Faruk Civan, Ph.D., is an Alumni Chair Professor in the Mewbourne School of Petroleum and Geological Engineering at the University of Oklahoma in Norman. Dr. Civan has received numerous honors and awards, including five distinguished lectureship awards and the 2003 SPE Distinguished Achievement Award for Petroleum Engineering Faculty. Petroleum engineers and managers get critical material on evaluation, prevention, and remediation of formation damage which can save or cost millions in profits from a mechanistic point of view State-of-the-Art knowledge and valuable insights into the nature of processes and operational practices causing formation damage Provides new strategies designed to minimize the impact of and avoid formation damage in petroleum reservoirs with the newest drilling, monitoring, and detection techniques


Book Synopsis Reservoir Formation Damage by : Faruk Civan

Download or read book Reservoir Formation Damage written by Faruk Civan and published by Elsevier. This book was released on 2011-08-30 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir Formation Damage, Second edition is a comprehensive treatise of the theory and modeling of common formation damage problems and is an important guide for research and development, laboratory testing for diagnosis and effective treatment, and tailor-fit- design of optimal strategies for mitigation of reservoir formation damage. The new edition includes field case histories and simulated scenarios demonstrating the consequences of formation damage in petroleum reservoirs Faruk Civan, Ph.D., is an Alumni Chair Professor in the Mewbourne School of Petroleum and Geological Engineering at the University of Oklahoma in Norman. Dr. Civan has received numerous honors and awards, including five distinguished lectureship awards and the 2003 SPE Distinguished Achievement Award for Petroleum Engineering Faculty. Petroleum engineers and managers get critical material on evaluation, prevention, and remediation of formation damage which can save or cost millions in profits from a mechanistic point of view State-of-the-Art knowledge and valuable insights into the nature of processes and operational practices causing formation damage Provides new strategies designed to minimize the impact of and avoid formation damage in petroleum reservoirs with the newest drilling, monitoring, and detection techniques


Diagnosis and Improvement of Saline and Alkali Soils

Diagnosis and Improvement of Saline and Alkali Soils

Author: L. E. Allison

Publisher:

Published: 1947

Total Pages: 180

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Diagnosis and Improvement of Saline and Alkali Soils by : L. E. Allison

Download or read book Diagnosis and Improvement of Saline and Alkali Soils written by L. E. Allison and published by . This book was released on 1947 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques

Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques

Author: Mohammad Zaman

Publisher: Springer

Published: 2018-11-28

Total Pages: 164

ISBN-13: 331996190X

DOWNLOAD EBOOK

This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and Dr. Shabbir A Shahid, Senior Salinity Management Expert, Freelancer based in United Arab Emirates.The objective of this book is to develop protocols for salinity and sodicity assessment and develop mitigation and adaptation measures to use saline and sodic soils sustainably. The focus is on important issues related to salinity and sodicity and to describe these in an easy and user friendly way. The information has been compiled from the latest published literature and from the authors’ publications specific to the subject matter. The book consists of six chapters. Chapter 1 introduces the terms salinity and sodicity and describes various salinity classification systems commonly used around the world. Chapter 2 reviews global distribution of salinization and socioeconomic aspects related to salinity and crop production. Chapters 3 covers comprehensively salinity and sodicity adaptation and mitigation options including physical, chemical, hydrological and biological methods. Chapter 4 discusses the efforts that have been made to demonstrate the development of soil salinity zones under different irrigation systems. Chapter 5 discusses the quality of irrigation water, boron toxicity and relative tolerance to boron, the effects of chlorides on crops. Chapter 6 introduces the role of nuclear techniques in saline agriculture.


Book Synopsis Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques by : Mohammad Zaman

Download or read book Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques written by Mohammad Zaman and published by Springer. This book was released on 2018-11-28 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and Dr. Shabbir A Shahid, Senior Salinity Management Expert, Freelancer based in United Arab Emirates.The objective of this book is to develop protocols for salinity and sodicity assessment and develop mitigation and adaptation measures to use saline and sodic soils sustainably. The focus is on important issues related to salinity and sodicity and to describe these in an easy and user friendly way. The information has been compiled from the latest published literature and from the authors’ publications specific to the subject matter. The book consists of six chapters. Chapter 1 introduces the terms salinity and sodicity and describes various salinity classification systems commonly used around the world. Chapter 2 reviews global distribution of salinization and socioeconomic aspects related to salinity and crop production. Chapters 3 covers comprehensively salinity and sodicity adaptation and mitigation options including physical, chemical, hydrological and biological methods. Chapter 4 discusses the efforts that have been made to demonstrate the development of soil salinity zones under different irrigation systems. Chapter 5 discusses the quality of irrigation water, boron toxicity and relative tolerance to boron, the effects of chlorides on crops. Chapter 6 introduces the role of nuclear techniques in saline agriculture.


Enhanced Oil Recovery Field Case Studies

Enhanced Oil Recovery Field Case Studies

Author: James J.Sheng

Publisher: Gulf Professional Publishing

Published: 2013-04-10

Total Pages: 710

ISBN-13: 0123865468

DOWNLOAD EBOOK

Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies, benefitting academicians and oil company practitioners alike. Strikes an ideal balance between theory and practice Focuses on practical problems, underlying theoretical and modeling methods, and operational parameters Designed for technical professionals, covering the fundamental as well as the advanced aspects of EOR


Book Synopsis Enhanced Oil Recovery Field Case Studies by : James J.Sheng

Download or read book Enhanced Oil Recovery Field Case Studies written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2013-04-10 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies, benefitting academicians and oil company practitioners alike. Strikes an ideal balance between theory and practice Focuses on practical problems, underlying theoretical and modeling methods, and operational parameters Designed for technical professionals, covering the fundamental as well as the advanced aspects of EOR