Applied Finite Element Analysis

Applied Finite Element Analysis

Author: Larry J. Segerlind

Publisher: John Wiley & Sons

Published: 1976

Total Pages: 458

ISBN-13:

DOWNLOAD EBOOK

An introductory textbook for senior/graduate couses in finite element analysis taught in all engineering departments. Covers the basic concepts of the finite element method and their application to the analysis of plane structures and two-dimensional continuum problems in heat transfer, irrotational fluid flow, and elasticity. This revised edition includes a reorganization of topics and an increase in the number of homework problems. The emphasis on numerical illustrations make topis clear without heavy use of sophisticated mathematics.


Book Synopsis Applied Finite Element Analysis by : Larry J. Segerlind

Download or read book Applied Finite Element Analysis written by Larry J. Segerlind and published by John Wiley & Sons. This book was released on 1976 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook for senior/graduate couses in finite element analysis taught in all engineering departments. Covers the basic concepts of the finite element method and their application to the analysis of plane structures and two-dimensional continuum problems in heat transfer, irrotational fluid flow, and elasticity. This revised edition includes a reorganization of topics and an increase in the number of homework problems. The emphasis on numerical illustrations make topis clear without heavy use of sophisticated mathematics.


Applied Finite Element Analysis

Applied Finite Element Analysis

Author: Larry J. Segerlind

Publisher: John Wiley & Sons

Published: 1991-01-16

Total Pages: 449

ISBN-13: 0471806625

DOWNLOAD EBOOK

An introductory textbook for senior/graduate couses in finite element analysis taught in all engineering departments. Covers the basic concepts of the finite element method and their application to the analysis of plane structures and two-dimensional continuum problems in heat transfer, irrotational fluid flow, and elasticity. This revised edition includes a reorganization of topics and an increase in the number of homework problems. The emphasis on numerical illustrations make topis clear without heavy use of sophisticated mathematics.


Book Synopsis Applied Finite Element Analysis by : Larry J. Segerlind

Download or read book Applied Finite Element Analysis written by Larry J. Segerlind and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook for senior/graduate couses in finite element analysis taught in all engineering departments. Covers the basic concepts of the finite element method and their application to the analysis of plane structures and two-dimensional continuum problems in heat transfer, irrotational fluid flow, and elasticity. This revised edition includes a reorganization of topics and an increase in the number of homework problems. The emphasis on numerical illustrations make topis clear without heavy use of sophisticated mathematics.


Applied Finite Element Analysis for Engineers

Applied Finite Element Analysis for Engineers

Author: Frank L. Stasa

Publisher: Oxford University Press, USA

Published: 1985

Total Pages: 676

ISBN-13:

DOWNLOAD EBOOK

Emphasizing how one applies FEM to practical engineering problems, this text provides a thorough introduction to the methods of finite analysis and applies these methods to problems of stress analysis, thermal analysis, fluid flow analysis, and lubrication.


Book Synopsis Applied Finite Element Analysis for Engineers by : Frank L. Stasa

Download or read book Applied Finite Element Analysis for Engineers written by Frank L. Stasa and published by Oxford University Press, USA. This book was released on 1985 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing how one applies FEM to practical engineering problems, this text provides a thorough introduction to the methods of finite analysis and applies these methods to problems of stress analysis, thermal analysis, fluid flow analysis, and lubrication.


Hands on Applied Finite Element Analysis

Hands on Applied Finite Element Analysis

Author: Mehmet Ali Arslan

Publisher:

Published: 2018-03

Total Pages: 611

ISBN-13: 9780999200599

DOWNLOAD EBOOK

The main purpose of this book is to equip, undergraduate/graduate students and professionals, who are craving to start up or enhance their learning with hands-on experience in solving real-life Finite Element Analysis (FEA) problems. This textbook is specially designed for mechanical, aeronautical, mechatronics, biomedical (i.e. orthopedics and dental studies), geotechnics and civil engineering students who are focusing on stress/strain analysis, heat transfer, and vibration characteristics of the problem of their interest. At the same time, this book may also serve the students from different backgrounds, who have a common or special interest in FEA.


Book Synopsis Hands on Applied Finite Element Analysis by : Mehmet Ali Arslan

Download or read book Hands on Applied Finite Element Analysis written by Mehmet Ali Arslan and published by . This book was released on 2018-03 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to equip, undergraduate/graduate students and professionals, who are craving to start up or enhance their learning with hands-on experience in solving real-life Finite Element Analysis (FEA) problems. This textbook is specially designed for mechanical, aeronautical, mechatronics, biomedical (i.e. orthopedics and dental studies), geotechnics and civil engineering students who are focusing on stress/strain analysis, heat transfer, and vibration characteristics of the problem of their interest. At the same time, this book may also serve the students from different backgrounds, who have a common or special interest in FEA.


Practical Finite Element Analysis

Practical Finite Element Analysis

Author: Nitin S. Gokhale

Publisher: FINITE TO INFINITE

Published: 2008

Total Pages: 27

ISBN-13: 8190619500

DOWNLOAD EBOOK

Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.


Book Synopsis Practical Finite Element Analysis by : Nitin S. Gokhale

Download or read book Practical Finite Element Analysis written by Nitin S. Gokhale and published by FINITE TO INFINITE. This book was released on 2008 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.


Applied Finite Element Analysis

Applied Finite Element Analysis

Author: G. Ramamurty

Publisher: I. K. International Pvt Ltd

Published: 2013-12-30

Total Pages: 447

ISBN-13: 9380578458

DOWNLOAD EBOOK

Presents the basic concepts of finite element analysis applied to engineering applications. Coverage includes several modules of elasticity, heat conduction, eigenvalue and fluid flow analysis; finite element formulations have been presented using both global and natural coordinates; heat conduction problems and fluid flows; and factors affecting the formulation.


Book Synopsis Applied Finite Element Analysis by : G. Ramamurty

Download or read book Applied Finite Element Analysis written by G. Ramamurty and published by I. K. International Pvt Ltd. This book was released on 2013-12-30 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the basic concepts of finite element analysis applied to engineering applications. Coverage includes several modules of elasticity, heat conduction, eigenvalue and fluid flow analysis; finite element formulations have been presented using both global and natural coordinates; heat conduction problems and fluid flows; and factors affecting the formulation.


The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods

Author: Susanne Brenner

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 369

ISBN-13: 1475736584

DOWNLOAD EBOOK

A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide


Book Synopsis The Mathematical Theory of Finite Element Methods by : Susanne Brenner

Download or read book The Mathematical Theory of Finite Element Methods written by Susanne Brenner and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide


Basic Finite Element Method as Applied to Injury Biomechanics

Basic Finite Element Method as Applied to Injury Biomechanics

Author: King-Hay Yang

Publisher: Academic Press

Published: 2017-09-22

Total Pages: 748

ISBN-13: 0128098325

DOWNLOAD EBOOK

Basic Finite Element Method as Applied to Injury Biomechanics provides a unique introduction to finite element methods. Unlike other books on the topic, this comprehensive reference teaches readers to develop a finite element model from the beginning, including all the appropriate theories that are needed throughout the model development process. In addition, the book focuses on how to apply material properties and loading conditions to the model, how to arrange the information in the order of head, neck, upper torso and upper extremity, lower torso and pelvis and lower extremity. The book covers scaling from one body size to the other, parametric modeling and joint positioning, and is an ideal text for teaching, further reading and for its unique application to injury biomechanics. With over 25 years of experience of developing finite element models, the author's experience with tissue level injury threshold instead of external loading conditions provides a guide to the "do’s and dont's" of using finite element method to study injury biomechanics. Covers the fundamentals and applications of the finite element method in injury biomechanics Teaches readers model development through a hands-on approach that is ideal for students and researchers Includes different modeling schemes used to model different parts of the body, including related constitutive laws and associated material properties


Book Synopsis Basic Finite Element Method as Applied to Injury Biomechanics by : King-Hay Yang

Download or read book Basic Finite Element Method as Applied to Injury Biomechanics written by King-Hay Yang and published by Academic Press. This book was released on 2017-09-22 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic Finite Element Method as Applied to Injury Biomechanics provides a unique introduction to finite element methods. Unlike other books on the topic, this comprehensive reference teaches readers to develop a finite element model from the beginning, including all the appropriate theories that are needed throughout the model development process. In addition, the book focuses on how to apply material properties and loading conditions to the model, how to arrange the information in the order of head, neck, upper torso and upper extremity, lower torso and pelvis and lower extremity. The book covers scaling from one body size to the other, parametric modeling and joint positioning, and is an ideal text for teaching, further reading and for its unique application to injury biomechanics. With over 25 years of experience of developing finite element models, the author's experience with tissue level injury threshold instead of external loading conditions provides a guide to the "do’s and dont's" of using finite element method to study injury biomechanics. Covers the fundamentals and applications of the finite element method in injury biomechanics Teaches readers model development through a hands-on approach that is ideal for students and researchers Includes different modeling schemes used to model different parts of the body, including related constitutive laws and associated material properties


Fundamentals of Finite Element Analysis

Fundamentals of Finite Element Analysis

Author: Ioannis Koutromanos

Publisher: John Wiley & Sons

Published: 2018-02-12

Total Pages: 724

ISBN-13: 1119260086

DOWNLOAD EBOOK

An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.


Book Synopsis Fundamentals of Finite Element Analysis by : Ioannis Koutromanos

Download or read book Fundamentals of Finite Element Analysis written by Ioannis Koutromanos and published by John Wiley & Sons. This book was released on 2018-02-12 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.


Advanced Finite Element Methods with Applications

Advanced Finite Element Methods with Applications

Author: Thomas Apel

Publisher: Springer

Published: 2019-06-28

Total Pages: 428

ISBN-13: 3030142442

DOWNLOAD EBOOK

Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.


Book Synopsis Advanced Finite Element Methods with Applications by : Thomas Apel

Download or read book Advanced Finite Element Methods with Applications written by Thomas Apel and published by Springer. This book was released on 2019-06-28 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.