Approximate Solution Methods in Engineering Mechanics

Approximate Solution Methods in Engineering Mechanics

Author: Arthur P. Boresi

Publisher: John Wiley & Sons

Published: 2003

Total Pages: 284

ISBN-13: 9780471402428

DOWNLOAD EBOOK

The only complete collection of prevalent approximation methods Unlike any other resource, Approximate Solution Methods in Engineering Mechanics, Second Edition offers in-depth coverage of the most common approximate numerical methods used in the solution of physical problems, including those used in popular computer modeling packages. Descriptions of each approximation method are presented with the latest relevant research and developments, providing thorough, working knowledge of the methods and their principles. Approximation methods covered include: * Boundary element method (BEM) * Weighted residuals method * Finite difference method (FDM) * Finite element method (FEM) * Finite strip/layer/prism methods * Meshless method Approximate Solution Methods in Engineering Mechanics, Second Edition is a valuable reference guide for mechanical, aerospace, and civil engineers, as well as students in these disciplines.


Book Synopsis Approximate Solution Methods in Engineering Mechanics by : Arthur P. Boresi

Download or read book Approximate Solution Methods in Engineering Mechanics written by Arthur P. Boresi and published by John Wiley & Sons. This book was released on 2003 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only complete collection of prevalent approximation methods Unlike any other resource, Approximate Solution Methods in Engineering Mechanics, Second Edition offers in-depth coverage of the most common approximate numerical methods used in the solution of physical problems, including those used in popular computer modeling packages. Descriptions of each approximation method are presented with the latest relevant research and developments, providing thorough, working knowledge of the methods and their principles. Approximation methods covered include: * Boundary element method (BEM) * Weighted residuals method * Finite difference method (FDM) * Finite element method (FEM) * Finite strip/layer/prism methods * Meshless method Approximate Solution Methods in Engineering Mechanics, Second Edition is a valuable reference guide for mechanical, aerospace, and civil engineers, as well as students in these disciplines.


Approximate Solution Methods in Engineering Mechanics

Approximate Solution Methods in Engineering Mechanics

Author: Boresi

Publisher:

Published: 2003-03-01

Total Pages:

ISBN-13: 9780471275510

DOWNLOAD EBOOK


Book Synopsis Approximate Solution Methods in Engineering Mechanics by : Boresi

Download or read book Approximate Solution Methods in Engineering Mechanics written by Boresi and published by . This book was released on 2003-03-01 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


The Best Approximation Method in Computational Mechanics

The Best Approximation Method in Computational Mechanics

Author: Theodore V., II Hromadka

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 259

ISBN-13: 1447120205

DOWNLOAD EBOOK

With the overwhelming use of computers in engineering, science and physics, the approximate solution of complex mathematical systems of equations is almost commonplace. The Best Approximation Method unifies many of the numerical methods used in computational mechanics. Nevertheless, despite the vast quantities of synthetic data there is still some doubt concerning the validity and accuracy of these approximations. This publication assists the computer modeller in his search for the best approximation by presenting functional analysis concepts. Computer programs are provided which can be used by readers with FORTRAN capability. The classes of problems examined include engineering applications, applied mathematics, numerical analysis and computational mechanics. The Best Approximation Method in Computational Mechanics serves as an introduction to functional analysis and mathematical analysis of computer modelling algorithms. It makes computer modellers aware of already established principles and results assembled in functional analysis.


Book Synopsis The Best Approximation Method in Computational Mechanics by : Theodore V., II Hromadka

Download or read book The Best Approximation Method in Computational Mechanics written by Theodore V., II Hromadka and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the overwhelming use of computers in engineering, science and physics, the approximate solution of complex mathematical systems of equations is almost commonplace. The Best Approximation Method unifies many of the numerical methods used in computational mechanics. Nevertheless, despite the vast quantities of synthetic data there is still some doubt concerning the validity and accuracy of these approximations. This publication assists the computer modeller in his search for the best approximation by presenting functional analysis concepts. Computer programs are provided which can be used by readers with FORTRAN capability. The classes of problems examined include engineering applications, applied mathematics, numerical analysis and computational mechanics. The Best Approximation Method in Computational Mechanics serves as an introduction to functional analysis and mathematical analysis of computer modelling algorithms. It makes computer modellers aware of already established principles and results assembled in functional analysis.


Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods

Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods

Author: Victor N. Kaliakin

Publisher: CRC Press

Published: 2018-04-19

Total Pages: 552

ISBN-13: 135199090X

DOWNLOAD EBOOK

Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone! This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM). Discusses the general notion of approximate solutions and associated errors! With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods: Describes the approximate solution of ordinary and partial differential equations using the finite difference method Covers the method of weighted residuals, including specific weighting and trial functions Considers variational methods Highlights all aspects associated with the formulation of finite element equations Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.


Book Synopsis Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods by : Victor N. Kaliakin

Download or read book Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods written by Victor N. Kaliakin and published by CRC Press. This book was released on 2018-04-19 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone! This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM). Discusses the general notion of approximate solutions and associated errors! With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods: Describes the approximate solution of ordinary and partial differential equations using the finite difference method Covers the method of weighted residuals, including specific weighting and trial functions Considers variational methods Highlights all aspects associated with the formulation of finite element equations Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.


The Best Approximation Method in Computational Mechanics

The Best Approximation Method in Computational Mechanics

Author: Theodore V., II Hromadka

Publisher: Springer

Published: 2011-12-12

Total Pages: 250

ISBN-13: 9781447120216

DOWNLOAD EBOOK

With the overwhelming use of computers in engineering, science and physics, the approximate solution of complex mathematical systems of equations is almost commonplace. The Best Approximation Method unifies many of the numerical methods used in computational mechanics. Nevertheless, despite the vast quantities of synthetic data there is still some doubt concerning the validity and accuracy of these approximations. This publication assists the computer modeller in his search for the best approximation by presenting functional analysis concepts. Computer programs are provided which can be used by readers with FORTRAN capability. The classes of problems examined include engineering applications, applied mathematics, numerical analysis and computational mechanics. The Best Approximation Method in Computational Mechanics serves as an introduction to functional analysis and mathematical analysis of computer modelling algorithms. It makes computer modellers aware of already established principles and results assembled in functional analysis.


Book Synopsis The Best Approximation Method in Computational Mechanics by : Theodore V., II Hromadka

Download or read book The Best Approximation Method in Computational Mechanics written by Theodore V., II Hromadka and published by Springer. This book was released on 2011-12-12 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the overwhelming use of computers in engineering, science and physics, the approximate solution of complex mathematical systems of equations is almost commonplace. The Best Approximation Method unifies many of the numerical methods used in computational mechanics. Nevertheless, despite the vast quantities of synthetic data there is still some doubt concerning the validity and accuracy of these approximations. This publication assists the computer modeller in his search for the best approximation by presenting functional analysis concepts. Computer programs are provided which can be used by readers with FORTRAN capability. The classes of problems examined include engineering applications, applied mathematics, numerical analysis and computational mechanics. The Best Approximation Method in Computational Mechanics serves as an introduction to functional analysis and mathematical analysis of computer modelling algorithms. It makes computer modellers aware of already established principles and results assembled in functional analysis.


Elasticity in Engineering Mechanics

Elasticity in Engineering Mechanics

Author: Arthur P. Boresi

Publisher: John Wiley & Sons

Published: 2010-12-01

Total Pages: 531

ISBN-13: 0470880384

DOWNLOAD EBOOK

Elasticity in Engineering Mechanics has been prized by many aspiring and practicing engineers as an easy-to-navigate guide to an area of engineering science that is fundamental to aeronautical, civil, and mechanical engineering, and to other branches of engineering. With its focus not only on elasticity theory, including nano- and biomechanics, but also on concrete applications in real engineering situations, this acclaimed work is a core text in a spectrum of courses at both the undergraduate and graduate levels, and a superior reference for engineering professionals.


Book Synopsis Elasticity in Engineering Mechanics by : Arthur P. Boresi

Download or read book Elasticity in Engineering Mechanics written by Arthur P. Boresi and published by John Wiley & Sons. This book was released on 2010-12-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elasticity in Engineering Mechanics has been prized by many aspiring and practicing engineers as an easy-to-navigate guide to an area of engineering science that is fundamental to aeronautical, civil, and mechanical engineering, and to other branches of engineering. With its focus not only on elasticity theory, including nano- and biomechanics, but also on concrete applications in real engineering situations, this acclaimed work is a core text in a spectrum of courses at both the undergraduate and graduate levels, and a superior reference for engineering professionals.


Numerical Methods in Mechanics of Materials

Numerical Methods in Mechanics of Materials

Author: Ken Chong

Publisher: CRC Press

Published: 2020-10-02

Total Pages: 318

ISBN-13: 9780367886257

DOWNLOAD EBOOK

In the dynamic digital age, the widespread use of computers has transformed engineering and science. A realistic and successful solution of an engineering problem usually begins with an accurate physical model of the problem and a proper understanding of the assumptions employed. With computers and appropriate software we can model and analyze complex physical systems and problems. However, efficient and accurate use of numerical results obtained from computer programs requires considerable background and advanced working knowledge to avoid blunders and the blind acceptance of computer results. This book provides the background and knowledge necessary to avoid these pitfalls, especially the most commonly used numerical methods employed in the solution of physical problems. It offers an in-depth presentation of the numerical methods for scales from nano to macro in nine self-contained chapters with extensive problems and up-to-date references, covering: Trends and new developments in simulation and computation Weighted residuals methods Finite difference methods Finite element methods Finite strip/layer/prism methods Boundary element methods Meshless methods Molecular dynamics Multiphysics problems Multiscale methods


Book Synopsis Numerical Methods in Mechanics of Materials by : Ken Chong

Download or read book Numerical Methods in Mechanics of Materials written by Ken Chong and published by CRC Press. This book was released on 2020-10-02 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the dynamic digital age, the widespread use of computers has transformed engineering and science. A realistic and successful solution of an engineering problem usually begins with an accurate physical model of the problem and a proper understanding of the assumptions employed. With computers and appropriate software we can model and analyze complex physical systems and problems. However, efficient and accurate use of numerical results obtained from computer programs requires considerable background and advanced working knowledge to avoid blunders and the blind acceptance of computer results. This book provides the background and knowledge necessary to avoid these pitfalls, especially the most commonly used numerical methods employed in the solution of physical problems. It offers an in-depth presentation of the numerical methods for scales from nano to macro in nine self-contained chapters with extensive problems and up-to-date references, covering: Trends and new developments in simulation and computation Weighted residuals methods Finite difference methods Finite element methods Finite strip/layer/prism methods Boundary element methods Meshless methods Molecular dynamics Multiphysics problems Multiscale methods


Approximation Techniques for Engineers

Approximation Techniques for Engineers

Author: Louis Komzsik

Publisher: CRC Press

Published: 2017-04-14

Total Pages: 387

ISBN-13: 1351792725

DOWNLOAD EBOOK

This second edition includes eleven new sections based on the approximation of matrix functions, deflating the solution space and improving the accuracy of approximate solutions, iterative solution of initial value problems of systems of ordinary differential equations, and the method of trial functions for boundary value problems. The topics of th


Book Synopsis Approximation Techniques for Engineers by : Louis Komzsik

Download or read book Approximation Techniques for Engineers written by Louis Komzsik and published by CRC Press. This book was released on 2017-04-14 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition includes eleven new sections based on the approximation of matrix functions, deflating the solution space and improving the accuracy of approximate solutions, iterative solution of initial value problems of systems of ordinary differential equations, and the method of trial functions for boundary value problems. The topics of th


Numerical Methods in Mechanics of Materials

Numerical Methods in Mechanics of Materials

Author: Ken P. Chong

Publisher: CRC Press

Published: 2017-11-27

Total Pages: 318

ISBN-13: 1351380990

DOWNLOAD EBOOK

In the dynamic digital age, the widespread use of computers has transformed engineering and science. A realistic and successful solution of an engineering problem usually begins with an accurate physical model of the problem and a proper understanding of the assumptions employed. With computers and appropriate software we can model and analyze complex physical systems and problems. However, efficient and accurate use of numerical results obtained from computer programs requires considerable background and advanced working knowledge to avoid blunders and the blind acceptance of computer results. This book provides the background and knowledge necessary to avoid these pitfalls, especially the most commonly used numerical methods employed in the solution of physical problems. It offers an in-depth presentation of the numerical methods for scales from nano to macro in nine self-contained chapters with extensive problems and up-to-date references, covering: Trends and new developments in simulation and computation Weighted residuals methods Finite difference methods Finite element methods Finite strip/layer/prism methods Boundary element methods Meshless methods Molecular dynamics Multiphysics problems Multiscale methods


Book Synopsis Numerical Methods in Mechanics of Materials by : Ken P. Chong

Download or read book Numerical Methods in Mechanics of Materials written by Ken P. Chong and published by CRC Press. This book was released on 2017-11-27 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the dynamic digital age, the widespread use of computers has transformed engineering and science. A realistic and successful solution of an engineering problem usually begins with an accurate physical model of the problem and a proper understanding of the assumptions employed. With computers and appropriate software we can model and analyze complex physical systems and problems. However, efficient and accurate use of numerical results obtained from computer programs requires considerable background and advanced working knowledge to avoid blunders and the blind acceptance of computer results. This book provides the background and knowledge necessary to avoid these pitfalls, especially the most commonly used numerical methods employed in the solution of physical problems. It offers an in-depth presentation of the numerical methods for scales from nano to macro in nine self-contained chapters with extensive problems and up-to-date references, covering: Trends and new developments in simulation and computation Weighted residuals methods Finite difference methods Finite element methods Finite strip/layer/prism methods Boundary element methods Meshless methods Molecular dynamics Multiphysics problems Multiscale methods


Numerical Analysis with Applications in Mechanics and Engineering

Numerical Analysis with Applications in Mechanics and Engineering

Author: Petre Teodorescu

Publisher: John Wiley & Sons

Published: 2013-05-07

Total Pages: 458

ISBN-13: 1118614623

DOWNLOAD EBOOK

A much-needed guide on how to use numerical methods to solve practical engineering problems Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret results. Each chapter is devoted to a unique analytical methodology, including a detailed theoretical presentation and emphasis on practical computation. Ample numerical examples and applications round out the discussion, illustrating how to work out specific problems of mechanics, physics, or engineering. Readers will learn the core purpose of each technique, develop hands-on problem-solving skills, and get a complete picture of the studied phenomenon. Coverage includes: How to deal with errors in numerical analysis Approaches for solving problems in linear and nonlinear systems Methods of interpolation and approximation of functions Formulas and calculations for numerical differentiation and integration Integration of ordinary and partial differential equations Optimization methods and solutions for programming problems Numerical Analysis with Applications in Mechanics and Engineering is a one-of-a-kind guide for engineers using mathematical models and methods, as well as for physicists and mathematicians interested in engineering problems.


Book Synopsis Numerical Analysis with Applications in Mechanics and Engineering by : Petre Teodorescu

Download or read book Numerical Analysis with Applications in Mechanics and Engineering written by Petre Teodorescu and published by John Wiley & Sons. This book was released on 2013-05-07 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: A much-needed guide on how to use numerical methods to solve practical engineering problems Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret results. Each chapter is devoted to a unique analytical methodology, including a detailed theoretical presentation and emphasis on practical computation. Ample numerical examples and applications round out the discussion, illustrating how to work out specific problems of mechanics, physics, or engineering. Readers will learn the core purpose of each technique, develop hands-on problem-solving skills, and get a complete picture of the studied phenomenon. Coverage includes: How to deal with errors in numerical analysis Approaches for solving problems in linear and nonlinear systems Methods of interpolation and approximation of functions Formulas and calculations for numerical differentiation and integration Integration of ordinary and partial differential equations Optimization methods and solutions for programming problems Numerical Analysis with Applications in Mechanics and Engineering is a one-of-a-kind guide for engineers using mathematical models and methods, as well as for physicists and mathematicians interested in engineering problems.