Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications

Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications

Author: Xiaoying Tang

Publisher: Frontiers Media SA

Published: 2019-08-22

Total Pages: 118

ISBN-13: 2889459845

DOWNLOAD EBOOK

Computational Anatomy (CA) is an emerging discipline aiming to understand anatomy by utilizing a comprehensive set of mathematical tools. CA focuses on providing precise statistical encodings of anatomy with direct application to a broad range of biological and medical settings. During the past two decades, there has been an ever-increasing pace in the development of neuroimaging techniques, delivering in vivo information on the anatomy and physiological signals of different human organs through a variety of imaging modalities such as MRI, x-ray, CT, and PET. These multi-modality medical images provide valuable data for accurate interpretation and estimation of various biological parameters such as anatomical labels, disease types, cognitive states, functional connectivity between distinct anatomical regions, as well as activation responses to specific stimuli. In the era of big neuroimaging data, Bayes’ theorem provides a powerful tool to deliver statistical conclusions by combining the current information and prior experience. When sufficiently good data is available, Bayes’ theorem can utilize it fully and provide statistical inferences/estimations with the least error rate. Bayes’ theorem arose roughly three hundred years ago and has seen extensive application in many fields of science and technology, including recent neuroimaging, ever since. The last fifteen years have seen a great deal of success in the application of Bayes’ theorem to the field of CA and neuroimaging. That said, given that the power and success of Bayes’ rule largely depends on the validity of its probabilistic inputs, it is still a challenge to perform Bayesian estimation and inference on the typically noisy neuroimaging data of the real world. We assembled contributions focusing on recent developments in CA and neuroimaging through Bayesian estimation and inference, in terms of both methodologies and applications. It is anticipated that the articles in this Research Topic will provide a greater insight into the field of Bayesian imaging analysis.


Book Synopsis Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications by : Xiaoying Tang

Download or read book Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications written by Xiaoying Tang and published by Frontiers Media SA. This book was released on 2019-08-22 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Anatomy (CA) is an emerging discipline aiming to understand anatomy by utilizing a comprehensive set of mathematical tools. CA focuses on providing precise statistical encodings of anatomy with direct application to a broad range of biological and medical settings. During the past two decades, there has been an ever-increasing pace in the development of neuroimaging techniques, delivering in vivo information on the anatomy and physiological signals of different human organs through a variety of imaging modalities such as MRI, x-ray, CT, and PET. These multi-modality medical images provide valuable data for accurate interpretation and estimation of various biological parameters such as anatomical labels, disease types, cognitive states, functional connectivity between distinct anatomical regions, as well as activation responses to specific stimuli. In the era of big neuroimaging data, Bayes’ theorem provides a powerful tool to deliver statistical conclusions by combining the current information and prior experience. When sufficiently good data is available, Bayes’ theorem can utilize it fully and provide statistical inferences/estimations with the least error rate. Bayes’ theorem arose roughly three hundred years ago and has seen extensive application in many fields of science and technology, including recent neuroimaging, ever since. The last fifteen years have seen a great deal of success in the application of Bayes’ theorem to the field of CA and neuroimaging. That said, given that the power and success of Bayes’ rule largely depends on the validity of its probabilistic inputs, it is still a challenge to perform Bayesian estimation and inference on the typically noisy neuroimaging data of the real world. We assembled contributions focusing on recent developments in CA and neuroimaging through Bayesian estimation and inference, in terms of both methodologies and applications. It is anticipated that the articles in this Research Topic will provide a greater insight into the field of Bayesian imaging analysis.


Statistical Parametric Mapping: The Analysis of Functional Brain Images

Statistical Parametric Mapping: The Analysis of Functional Brain Images

Author: William D. Penny

Publisher: Elsevier

Published: 2011-04-28

Total Pages: 689

ISBN-13: 0080466508

DOWNLOAD EBOOK

In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. An essential reference and companion for users of the SPM software Provides a complete description of the concepts and procedures entailed by the analysis of brain images Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data Stands as a compendium of all the advances in neuroimaging data analysis over the past decade Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes Structured treatment of data analysis issues that links different modalities and models Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible


Book Synopsis Statistical Parametric Mapping: The Analysis of Functional Brain Images by : William D. Penny

Download or read book Statistical Parametric Mapping: The Analysis of Functional Brain Images written by William D. Penny and published by Elsevier. This book was released on 2011-04-28 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. An essential reference and companion for users of the SPM software Provides a complete description of the concepts and procedures entailed by the analysis of brain images Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data Stands as a compendium of all the advances in neuroimaging data analysis over the past decade Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes Structured treatment of data analysis issues that links different modalities and models Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible


Brain Mapping

Brain Mapping

Author:

Publisher: Academic Press

Published: 2015-02-14

Total Pages: 2668

ISBN-13: 0123973163

DOWNLOAD EBOOK

Brain Mapping: A Comprehensive Reference, Three Volume Set offers foundational information for students and researchers across neuroscience. With over 300 articles and a media rich environment, this resource provides exhaustive coverage of the methods and systems involved in brain mapping, fully links the data to disease (presenting side by side maps of healthy and diseased brains for direct comparisons), and offers data sets and fully annotated color images. Each entry is built on a layered approach of the content – basic information for those new to the area and more detailed material for experienced readers. Edited and authored by the leading experts in the field, this work offers the most reputable, easily searchable content with cross referencing across articles, a one-stop reference for students, researchers and teaching faculty. Broad overview of neuroimaging concepts with applications across the neurosciences and biomedical research Fully annotated color images and videos for best comprehension of concepts Layered content for readers of different levels of expertise Easily searchable entries for quick access of reputable information Live reference links to ScienceDirect, Scopus and PubMed


Book Synopsis Brain Mapping by :

Download or read book Brain Mapping written by and published by Academic Press. This book was released on 2015-02-14 with total page 2668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brain Mapping: A Comprehensive Reference, Three Volume Set offers foundational information for students and researchers across neuroscience. With over 300 articles and a media rich environment, this resource provides exhaustive coverage of the methods and systems involved in brain mapping, fully links the data to disease (presenting side by side maps of healthy and diseased brains for direct comparisons), and offers data sets and fully annotated color images. Each entry is built on a layered approach of the content – basic information for those new to the area and more detailed material for experienced readers. Edited and authored by the leading experts in the field, this work offers the most reputable, easily searchable content with cross referencing across articles, a one-stop reference for students, researchers and teaching faculty. Broad overview of neuroimaging concepts with applications across the neurosciences and biomedical research Fully annotated color images and videos for best comprehension of concepts Layered content for readers of different levels of expertise Easily searchable entries for quick access of reputable information Live reference links to ScienceDirect, Scopus and PubMed


Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics

Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics

Author: M. Jorge Cardoso

Publisher: Springer

Published: 2017-09-06

Total Pages: 262

ISBN-13: 331967675X

DOWNLOAD EBOOK

This book constitutes the refereed joint proceedings of the First International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2017, the 6th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2017, and the Third International Workshop on Imaging Genetics, MICGen 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 7 full papers presented at GRAIL 2017, the 10 full papers presented at MFCA 2017, and the 5 full papers presented at MICGen 2017 were carefully reviewed and selected. The GRAIL papers cover a wide range of graph based medical image analysis methods and applications, including probabilistic graphical models, neuroimaging using graph representations, machine learning for diagnosis prediction, and shape modeling. The MFCA papers deal with theoretical developments in non-linear image and surface registration in the context of computational anatomy. The MICGen papers cover topics in the field of medical genetics, computational biology and medical imaging.


Book Synopsis Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics by : M. Jorge Cardoso

Download or read book Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics written by M. Jorge Cardoso and published by Springer. This book was released on 2017-09-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed joint proceedings of the First International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2017, the 6th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2017, and the Third International Workshop on Imaging Genetics, MICGen 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 7 full papers presented at GRAIL 2017, the 10 full papers presented at MFCA 2017, and the 5 full papers presented at MICGen 2017 were carefully reviewed and selected. The GRAIL papers cover a wide range of graph based medical image analysis methods and applications, including probabilistic graphical models, neuroimaging using graph representations, machine learning for diagnosis prediction, and shape modeling. The MFCA papers deal with theoretical developments in non-linear image and surface registration in the context of computational anatomy. The MICGen papers cover topics in the field of medical genetics, computational biology and medical imaging.


Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy

Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy

Author: Dajiang Zhu

Publisher: Springer

Published: 2019-10-11

Total Pages: 230

ISBN-13: 9783030332259

DOWNLOAD EBOOK

This book constitutes the refereed joint proceedings of the 4th International Workshop on Multimodal Brain Image Analysis, MBAI 2019, and the 7th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019. The 16 full papers presented at MBAI 2019 and the 7 full papers presented at MFCA 2019 were carefully reviewed and selected. The MBAI papers intend to move forward the state of the art in multimodal brain image analysis, in terms of analysis methodologies, algorithms, software systems, validation approaches, benchmark datasets, neuroscience, and clinical applications. The MFCA papers are devoted to statistical and geometrical methods for modeling the variability of biological shapes. The goal is to foster the interactions between the mathematical community around shapes and the MICCAI community around computational anatomy applications.


Book Synopsis Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy by : Dajiang Zhu

Download or read book Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy written by Dajiang Zhu and published by Springer. This book was released on 2019-10-11 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed joint proceedings of the 4th International Workshop on Multimodal Brain Image Analysis, MBAI 2019, and the 7th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019. The 16 full papers presented at MBAI 2019 and the 7 full papers presented at MFCA 2019 were carefully reviewed and selected. The MBAI papers intend to move forward the state of the art in multimodal brain image analysis, in terms of analysis methodologies, algorithms, software systems, validation approaches, benchmark datasets, neuroscience, and clinical applications. The MFCA papers are devoted to statistical and geometrical methods for modeling the variability of biological shapes. The goal is to foster the interactions between the mathematical community around shapes and the MICCAI community around computational anatomy applications.


Recent Advances and the Future Generation of Neuroinformatics Infrastructure

Recent Advances and the Future Generation of Neuroinformatics Infrastructure

Author: Xi Cheng

Publisher: Frontiers Media SA

Published: 2015-12-11

Total Pages: 390

ISBN-13: 2889196771

DOWNLOAD EBOOK

The huge volume of multi-modal neuroimaging data across different neuroscience communities has posed a daunting challenge to traditional methods of data sharing, data archiving, data processing and data analysis. Neuroinformatics plays a crucial role in creating advanced methodologies and tools for the handling of varied and heterogeneous datasets in order to better understand the structure and function of the brain. These tools and methodologies not only enhance data collection, analysis, integration, interpretation, modeling, and dissemination of data, but also promote data sharing and collaboration. This Neuroinformatics Research Topic aims to summarize the state-of-art of the current achievements and explores the directions for the future generation of neuroinformatics infrastructure. The publications present solutions for data archiving, data processing and workflow, data mining, and system integration methodologies. Some of the systems presented are large in scale, geographically distributed, and already have a well-established user community. Some discuss opportunities and methodologies that facilitate large-scale parallel data processing tasks under a heterogeneous computational environment. We wish to stimulate on-going discussions at the level of the neuroinformatics infrastructure including the common challenges, new technologies of maximum benefit, key features of next generation infrastructure, etc. We have asked leading research groups from different research areas of neuroscience/neuroimaging to provide their thoughts on the development of a state of the art and highly-efficient neuroinformatics infrastructure. Such discussions will inspire and help guide the development of a state of the art, highly-efficient neuroinformatics infrastructure.


Book Synopsis Recent Advances and the Future Generation of Neuroinformatics Infrastructure by : Xi Cheng

Download or read book Recent Advances and the Future Generation of Neuroinformatics Infrastructure written by Xi Cheng and published by Frontiers Media SA. This book was released on 2015-12-11 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The huge volume of multi-modal neuroimaging data across different neuroscience communities has posed a daunting challenge to traditional methods of data sharing, data archiving, data processing and data analysis. Neuroinformatics plays a crucial role in creating advanced methodologies and tools for the handling of varied and heterogeneous datasets in order to better understand the structure and function of the brain. These tools and methodologies not only enhance data collection, analysis, integration, interpretation, modeling, and dissemination of data, but also promote data sharing and collaboration. This Neuroinformatics Research Topic aims to summarize the state-of-art of the current achievements and explores the directions for the future generation of neuroinformatics infrastructure. The publications present solutions for data archiving, data processing and workflow, data mining, and system integration methodologies. Some of the systems presented are large in scale, geographically distributed, and already have a well-established user community. Some discuss opportunities and methodologies that facilitate large-scale parallel data processing tasks under a heterogeneous computational environment. We wish to stimulate on-going discussions at the level of the neuroinformatics infrastructure including the common challenges, new technologies of maximum benefit, key features of next generation infrastructure, etc. We have asked leading research groups from different research areas of neuroscience/neuroimaging to provide their thoughts on the development of a state of the art and highly-efficient neuroinformatics infrastructure. Such discussions will inspire and help guide the development of a state of the art, highly-efficient neuroinformatics infrastructure.


Bayesian Variable Selection with Applications to Neuroimaging Data

Bayesian Variable Selection with Applications to Neuroimaging Data

Author: Shariq Mohammed

Publisher:

Published: 2018

Total Pages: 135

ISBN-13:

DOWNLOAD EBOOK

In this dissertation, we discuss Bayesian modeling approaches for identifying brain regions that respond to certain stimulus and use them to classify subjects. We specifically deal with multi-subject electroencephalography (EEG) data where the responses are binary, and the covariates are matrices, with measurements taken for each subject at different locations across multiple time points. EEG data has a complex structure with both spatial and temporal attributes to it. We use a divide and conquer strategy to build multiple local models, that is, one model at each time point separately both, to avoid the curse of dimensionality and to achieve computational feasibility. Within each local model, we use Bayesian variable selection approaches to identify the locations which respond to a stimulus. We use continuous spike and slab prior, which has inherent variable selection properties. We initially demonstrate the local Bayesian modeling approach which is computationally inexpensive, where the estimation for each local modeling could be conducted in parallel. We use MCMC sampling procedures for parameter estimation. We also discuss a two-stage variable selection approach based on thresholding using the complexity parameter built within the model. A prediction strategy is built utilizing the temporal structure between local models. The spatial correlation is incorporated within the local Bayesian modeling to improve the inference. The temporal characteristic of the data is incorporated through the prior structure by learning from the local models estimated at previous time points. Variable selection is done via clustering of the locations based on their activation time. We then use a weighted prediction strategy to pool information from the local spatial models to make a final prediction. Since the EEG data has both spatial and temporal correlations acting simultaneously, we enrich our local Bayesian modeling by incorporating both correlations through a Kronecker product of the spatial and temporal correlation structures. We develop a highly scalable estimation approach to deal with the ultra-huge number of parameters in the model. We demonstrate the efficiency of estimation using the scalable algorithm by performing simulation studies. We also study the performance of these models through a case study on multi-subject EEG data.


Book Synopsis Bayesian Variable Selection with Applications to Neuroimaging Data by : Shariq Mohammed

Download or read book Bayesian Variable Selection with Applications to Neuroimaging Data written by Shariq Mohammed and published by . This book was released on 2018 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, we discuss Bayesian modeling approaches for identifying brain regions that respond to certain stimulus and use them to classify subjects. We specifically deal with multi-subject electroencephalography (EEG) data where the responses are binary, and the covariates are matrices, with measurements taken for each subject at different locations across multiple time points. EEG data has a complex structure with both spatial and temporal attributes to it. We use a divide and conquer strategy to build multiple local models, that is, one model at each time point separately both, to avoid the curse of dimensionality and to achieve computational feasibility. Within each local model, we use Bayesian variable selection approaches to identify the locations which respond to a stimulus. We use continuous spike and slab prior, which has inherent variable selection properties. We initially demonstrate the local Bayesian modeling approach which is computationally inexpensive, where the estimation for each local modeling could be conducted in parallel. We use MCMC sampling procedures for parameter estimation. We also discuss a two-stage variable selection approach based on thresholding using the complexity parameter built within the model. A prediction strategy is built utilizing the temporal structure between local models. The spatial correlation is incorporated within the local Bayesian modeling to improve the inference. The temporal characteristic of the data is incorporated through the prior structure by learning from the local models estimated at previous time points. Variable selection is done via clustering of the locations based on their activation time. We then use a weighted prediction strategy to pool information from the local spatial models to make a final prediction. Since the EEG data has both spatial and temporal correlations acting simultaneously, we enrich our local Bayesian modeling by incorporating both correlations through a Kronecker product of the spatial and temporal correlation structures. We develop a highly scalable estimation approach to deal with the ultra-huge number of parameters in the model. We demonstrate the efficiency of estimation using the scalable algorithm by performing simulation studies. We also study the performance of these models through a case study on multi-subject EEG data.


Active Inference

Active Inference

Author: Thomas Parr

Publisher: MIT Press

Published: 2022-03-29

Total Pages: 313

ISBN-13: 0262362287

DOWNLOAD EBOOK

The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.


Book Synopsis Active Inference by : Thomas Parr

Download or read book Active Inference written by Thomas Parr and published by MIT Press. This book was released on 2022-03-29 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.


Personalized Psychiatry

Personalized Psychiatry

Author: Ives Cavalcante Passos

Publisher: Springer

Published: 2019-02-12

Total Pages: 180

ISBN-13: 3030035530

DOWNLOAD EBOOK

This book integrates the concepts of big data analytics into mental health practice and research. Mental disorders represent a public health challenge of staggering proportions. According to the most recent Global Burden of Disease study, psychiatric disorders constitute the leading cause of years lost to disability. The high morbidity and mortality related to these conditions are proportional to the potential for overall health gains if mental disorders can be more effectively diagnosed and treated. In order to fill these gaps, analysis in science, industry, and government seeks to use big data for a variety of problems, including clinical outcomes and diagnosis in psychiatry. Multiple mental healthcare providers and research laboratories are increasingly using large data sets to fulfill their mission. Briefly, big data is characterized by high volume, high velocity, variety and veracity of information, and to be useful it must be analyzed, interpreted, and acted upon. As such, focus has to shift to new analytical tools from the field of machine learning that will be critical for anyone practicing medicine, psychiatry and behavioral sciences in the 21st century. Big data analytics is gaining traction in psychiatric research, being used to provide predictive models for both clinical practice and public health systems. As compared with traditional statistical methods that provide primarily average group-level results, big data analytics allows predictions and stratification of clinical outcomes at an individual subject level. Personalized Psychiatry – Big Data Analytics in Mental Health provides a unique opportunity to showcase innovative solutions tackling complex problems in mental health using big data and machine learning. It represents an interesting platform to work with key opinion leaders to document current achievements, introduce new concepts as well as project the future role of big data and machine learning in mental health.


Book Synopsis Personalized Psychiatry by : Ives Cavalcante Passos

Download or read book Personalized Psychiatry written by Ives Cavalcante Passos and published by Springer. This book was released on 2019-02-12 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates the concepts of big data analytics into mental health practice and research. Mental disorders represent a public health challenge of staggering proportions. According to the most recent Global Burden of Disease study, psychiatric disorders constitute the leading cause of years lost to disability. The high morbidity and mortality related to these conditions are proportional to the potential for overall health gains if mental disorders can be more effectively diagnosed and treated. In order to fill these gaps, analysis in science, industry, and government seeks to use big data for a variety of problems, including clinical outcomes and diagnosis in psychiatry. Multiple mental healthcare providers and research laboratories are increasingly using large data sets to fulfill their mission. Briefly, big data is characterized by high volume, high velocity, variety and veracity of information, and to be useful it must be analyzed, interpreted, and acted upon. As such, focus has to shift to new analytical tools from the field of machine learning that will be critical for anyone practicing medicine, psychiatry and behavioral sciences in the 21st century. Big data analytics is gaining traction in psychiatric research, being used to provide predictive models for both clinical practice and public health systems. As compared with traditional statistical methods that provide primarily average group-level results, big data analytics allows predictions and stratification of clinical outcomes at an individual subject level. Personalized Psychiatry – Big Data Analytics in Mental Health provides a unique opportunity to showcase innovative solutions tackling complex problems in mental health using big data and machine learning. It represents an interesting platform to work with key opinion leaders to document current achievements, introduce new concepts as well as project the future role of big data and machine learning in mental health.


Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2009

Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2009

Author: Guang-Zhong Yang

Publisher: Springer Science & Business Media

Published: 2009-09-07

Total Pages: 1168

ISBN-13: 3642042708

DOWNLOAD EBOOK

The two-volume set LNCS 5761 and LNCS 5762 constitute the refereed proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009, held in London, UK, in September 2009. Based on rigorous peer reviews, the program committee carefully selected 259 revised papers from 804 submissions for presentation in two volumes. The first volume includes 125 papers divided in topical sections on cardiovascular image guided intervention and robotics; surgical navigation and tissue interaction; intra-operative imaging and endoscopic navigation; motion modeling and image formation; image registration; modeling and segmentation; image segmentation and classification; segmentation and atlas based techniques; neuroimage analysis; surgical navigation and robotics; image registration; and neuroimage analysis: structure and function.


Book Synopsis Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2009 by : Guang-Zhong Yang

Download or read book Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2009 written by Guang-Zhong Yang and published by Springer Science & Business Media. This book was released on 2009-09-07 with total page 1168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 5761 and LNCS 5762 constitute the refereed proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009, held in London, UK, in September 2009. Based on rigorous peer reviews, the program committee carefully selected 259 revised papers from 804 submissions for presentation in two volumes. The first volume includes 125 papers divided in topical sections on cardiovascular image guided intervention and robotics; surgical navigation and tissue interaction; intra-operative imaging and endoscopic navigation; motion modeling and image formation; image registration; modeling and segmentation; image segmentation and classification; segmentation and atlas based techniques; neuroimage analysis; surgical navigation and robotics; image registration; and neuroimage analysis: structure and function.