Bio-inspired Tactile Sensing

Bio-inspired Tactile Sensing

Author: Moritz Scharf

Publisher: BoD – Books on Demand

Published: 2021-01-01

Total Pages: 190

ISBN-13: 3863602374

DOWNLOAD EBOOK

The transfers of natural mechanisms and structures into artificial, technical applications are successful approaches for innovation and become more important nowadays. The concept of Biomechatronics provides a structured framework to do so. Following these ideas, this work analyses a novel tactile sensor inspired by natural vibrissae. The sense of touch is an indispensable part of the sensory system of living beings. In, e.g., rats, the so-called vibrissal system, including long sensory hairs around the muzzle of the animals (vibrissae), is an essential part of tactile perception. Rats can determine the location, shape, and texture of an object by touching it with their vibrissae. Transferring these abilities to an artificial sensor design, the interaction between the hair/sensor shaft and different objects are analyzed. The sensor/hair shaft fulfills different functions in terms of a preprocessing of the captured signals. Therefore, by knowing and controlling these effects, the captured signals can be optimized in a way that particular information inside the captured signals is pronounced.


Book Synopsis Bio-inspired Tactile Sensing by : Moritz Scharf

Download or read book Bio-inspired Tactile Sensing written by Moritz Scharf and published by BoD – Books on Demand. This book was released on 2021-01-01 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transfers of natural mechanisms and structures into artificial, technical applications are successful approaches for innovation and become more important nowadays. The concept of Biomechatronics provides a structured framework to do so. Following these ideas, this work analyses a novel tactile sensor inspired by natural vibrissae. The sense of touch is an indispensable part of the sensory system of living beings. In, e.g., rats, the so-called vibrissal system, including long sensory hairs around the muzzle of the animals (vibrissae), is an essential part of tactile perception. Rats can determine the location, shape, and texture of an object by touching it with their vibrissae. Transferring these abilities to an artificial sensor design, the interaction between the hair/sensor shaft and different objects are analyzed. The sensor/hair shaft fulfills different functions in terms of a preprocessing of the captured signals. Therefore, by knowing and controlling these effects, the captured signals can be optimized in a way that particular information inside the captured signals is pronounced.


Bioinspired Actuators and Sensors

Bioinspired Actuators and Sensors

Author: Minoru Taya

Publisher: Cambridge University Press

Published: 2016-10-13

Total Pages: 539

ISBN-13: 1107065380

DOWNLOAD EBOOK

From experts in engineering and biology, this is the first book to integrate sensor and actuator technology with bioinspired design.


Book Synopsis Bioinspired Actuators and Sensors by : Minoru Taya

Download or read book Bioinspired Actuators and Sensors written by Minoru Taya and published by Cambridge University Press. This book was released on 2016-10-13 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: From experts in engineering and biology, this is the first book to integrate sensor and actuator technology with bioinspired design.


Modelling of a Bio Inspired Tactile Sensor Mimicking the Responses of Human Mechanoreceptors

Modelling of a Bio Inspired Tactile Sensor Mimicking the Responses of Human Mechanoreceptors

Author: Nor Syamimi Mohamad Sabri

Publisher:

Published: 2016

Total Pages: 147

ISBN-13:

DOWNLOAD EBOOK

The objectives of this study are as follows to propose a bio inspired tactile sensorequipped with tactile sensing elements covering both static and dynamic components of mechanoreceptors; to assess the feasibility of replicating the function of fast adapting (FA) and slow adapting (SA) receptors using piezoelectric and piezoresistive components respectively, by using FEA simulations software COMSOL Multiphysics v 5.1; to propose a unit of a bio inspired tactile sensor with a suitable ridge dimensions including the size of the proposed strain gauge and PVDF thin film. The tactile sensor was built in mimicking the human glabrous skin properties. The skin structure was also ridged to improve the efficiency of both static and dynamic force detection in normal and shear directions. The scopes of the study are to address the optimum ridge shape, the height of the modelled epidermal ridge and to identify the optimum sensor placement (the depth below the skin surface) of the modelled bio inspired tactile sensor. Also, seek to obtain the shape and size of modelled strain gauge as well as the best strain gauges orientation with ability to predict the component of force in x,y and z directions. Finally, to produce and verified the PVDF output.


Book Synopsis Modelling of a Bio Inspired Tactile Sensor Mimicking the Responses of Human Mechanoreceptors by : Nor Syamimi Mohamad Sabri

Download or read book Modelling of a Bio Inspired Tactile Sensor Mimicking the Responses of Human Mechanoreceptors written by Nor Syamimi Mohamad Sabri and published by . This book was released on 2016 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objectives of this study are as follows to propose a bio inspired tactile sensorequipped with tactile sensing elements covering both static and dynamic components of mechanoreceptors; to assess the feasibility of replicating the function of fast adapting (FA) and slow adapting (SA) receptors using piezoelectric and piezoresistive components respectively, by using FEA simulations software COMSOL Multiphysics v 5.1; to propose a unit of a bio inspired tactile sensor with a suitable ridge dimensions including the size of the proposed strain gauge and PVDF thin film. The tactile sensor was built in mimicking the human glabrous skin properties. The skin structure was also ridged to improve the efficiency of both static and dynamic force detection in normal and shear directions. The scopes of the study are to address the optimum ridge shape, the height of the modelled epidermal ridge and to identify the optimum sensor placement (the depth below the skin surface) of the modelled bio inspired tactile sensor. Also, seek to obtain the shape and size of modelled strain gauge as well as the best strain gauges orientation with ability to predict the component of force in x,y and z directions. Finally, to produce and verified the PVDF output.


Multimodal Bioinspired Artificial Skin Module for Tactile Sensing

Multimodal Bioinspired Artificial Skin Module for Tactile Sensing

Author: Thiago Eustaquio Alves de Oliveira

Publisher:

Published: 2019

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Tactile sensors are the last frontier to robots that can handle everyday objects and interact with humans through contact. Robots are expected to recognize the properties of objects in order to handle them safely and efficiently in a variety of applications, such as health- and elder care, manufacturing, or high-risk environments. To be effective, such sensors have to sense the geometry of touched surfaces and objects, as well as any other relevant information for their tasks, such as forces, vibrations, and temperature, that allow them to safely and securely interact within an environment. Given the capability of humans to easily capture and interpret tactile data, one promising direction in order to produce enhanced robotic tactile sensors is to explore and imitate human tactile sensing capabilities. In this context, this thesis presents the design and hardware implementation issues related to the construction of a novel multimodal bio-inspired skin module for dynamic and static tactile surface characterization. Drawing inspiration from the type, functionality, and organization of cutaneous tactile elements in the human skin, the proposed solution determines the placement of two shallow sensors (a tactile array and a nine DOF magnetic, angular rate, and gravity system) and a deep pressure sensor within a flexible compliant structure, similar to the receptive field of the Pacinian mechanoreceptor. The benefit of using a compliant structure is tri-folded. First, the module has the capability of performing touch tasks on unknown surfaces, tackling the tactile inversion problem. The compliant structure guides deforming forces from its surface to the deep pressure sensor, while keeping track of the deformation of the structure using advantageously placed shallow sensors. Second, the module's compliant structure and its embedded sensor placement provide useful data to overcome the problem of estimating non-normal forces, a significant challenge for the current generation of tactile sensing technologies. This capability allows accommodating sensing modalities essential for acquiring tactile images and classifying surfaces by vibrations and accelerations. Third, the compliant structure of the module also contributes to the relaxation of orientation constraints of end-effectors or other robotic parts carrying the module to contact surfaces of unknown objects. Issues related to the module calibration, its sensing capabilities and possible real-world applications are also presented.


Book Synopsis Multimodal Bioinspired Artificial Skin Module for Tactile Sensing by : Thiago Eustaquio Alves de Oliveira

Download or read book Multimodal Bioinspired Artificial Skin Module for Tactile Sensing written by Thiago Eustaquio Alves de Oliveira and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Tactile sensors are the last frontier to robots that can handle everyday objects and interact with humans through contact. Robots are expected to recognize the properties of objects in order to handle them safely and efficiently in a variety of applications, such as health- and elder care, manufacturing, or high-risk environments. To be effective, such sensors have to sense the geometry of touched surfaces and objects, as well as any other relevant information for their tasks, such as forces, vibrations, and temperature, that allow them to safely and securely interact within an environment. Given the capability of humans to easily capture and interpret tactile data, one promising direction in order to produce enhanced robotic tactile sensors is to explore and imitate human tactile sensing capabilities. In this context, this thesis presents the design and hardware implementation issues related to the construction of a novel multimodal bio-inspired skin module for dynamic and static tactile surface characterization. Drawing inspiration from the type, functionality, and organization of cutaneous tactile elements in the human skin, the proposed solution determines the placement of two shallow sensors (a tactile array and a nine DOF magnetic, angular rate, and gravity system) and a deep pressure sensor within a flexible compliant structure, similar to the receptive field of the Pacinian mechanoreceptor. The benefit of using a compliant structure is tri-folded. First, the module has the capability of performing touch tasks on unknown surfaces, tackling the tactile inversion problem. The compliant structure guides deforming forces from its surface to the deep pressure sensor, while keeping track of the deformation of the structure using advantageously placed shallow sensors. Second, the module's compliant structure and its embedded sensor placement provide useful data to overcome the problem of estimating non-normal forces, a significant challenge for the current generation of tactile sensing technologies. This capability allows accommodating sensing modalities essential for acquiring tactile images and classifying surfaces by vibrations and accelerations. Third, the compliant structure of the module also contributes to the relaxation of orientation constraints of end-effectors or other robotic parts carrying the module to contact surfaces of unknown objects. Issues related to the module calibration, its sensing capabilities and possible real-world applications are also presented.


Bio-inspired Tactile Sensing : Analysis of the Inherent Characteristics of a Vibrissa-like Tactile Sensor

Bio-inspired Tactile Sensing : Analysis of the Inherent Characteristics of a Vibrissa-like Tactile Sensor

Author: Moritz Scharff

Publisher:

Published: 2020

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Die Weiterentwicklung taktiler Sensoren gewinnt an Bedeutung bspw. durch eine verstärkte Anwendung taktiler Sensoren zur Navigation in unbekannten Umgebungen von autonomen mobilen Robotern. Eine Möglichkeit taktile Sensoren weiter zu entwickeln ist, sich - wie auch schon andere Entwicklungen zeigen - der Natur zu bedienen, Vorbilder zu identifizieren, diese fundamental zu analysieren und als wesentlich befundene Eigenschaften und Funktionstüchtigkeiten zu adaptieren. Ratten besitzen auffällige Tasthaare an beiden Seiten der Schnauze, sogenannte Vibrissen. Diese sind gekennzeichnet durch einen langen, schlanken und natürlich vorgekrümmten Haarschaft mit konischem Querschnittsverlauf. Der Haarschaft wird von einem Haarfollikel gehalten, der sich unter der Haut befindet und in dem überdies Mechanorezeptoren zur Reizdetektion zu finden sind. Während der Erkundung von unbekannten Umgebungen und Objekten setzen Ratten ihre Vibrissen ein, um bspw. die Form oder Textur eines Objektes zu bestimmen, indem die Vibrisse daran entlang bewegt wird. Die Informationsaufnahme wird im Haarfollikel durch die Mechanorezeptoren realisiert. Die vorliegende Arbeit leistet einen Beitrag zum übergeordneten Ziel, die Eigenschaften und Einsatzmöglichkeiten dieses komplexen und hochentwickelten Sensorsystems der Natur für technische Anwendungen nutzbar zu machen. Die Eigenschaften einer Vibrisse sind synergetisch und beeinflussen ihre Funktionen in bedeutendem Maß. Deshalb wird das natürliche Vorbild detailliert analysiert und mit den Konzepten des biomechatronischen Systems und des Reizleitungsapparats beschrieben und auf dieser Basis ein Vibrissen-ähnlicher Sensor entworfen, um die inhärenten Eigenschaften eines solchen Sensorsystems zu untersuchen. Um die Funktionstüchtigkeit des entworfenen Protoyps, aufgebaut auf Basis der detaillierten Vorabanalyse, zu untersuchen, werden verschiedene Testobjekte, einschließlich verschiedener Oberflächenbeschaffenheiten, mit dem Sensor vermessen. Anhand der aufgezeichneten Messsignale zeigt sich, dass ein Objekt durch seine generelle Form sowie seine makroskopische und mikroskopische Oberflächenstruktur beschrieben werden kann. Die genannten Informationen überlagern sich in den gemessenen Signalen und müssen für eine weiterführende Auswertung extrahiert werden. Der Abstand zwischen Sensorlagerung und Objekt hat entscheidenden Einfluss. Makroskopische Oberflächenelemente lassen sich im Abstand von 80% der Länge des Sensorschafts besonders gut detektieren. Ein mittlerer Abstand, ca. 60% der Länge des Sensorschafts, unterstützt die Erfassung der Eigenschaften einer mikroskopischen Textur. Hingegen ist ein kleiner Abstand von 45% der Sensorschaftlänge besonders geeignet zur Detektion der generellen Form des Objekts. Diese Effekte sind in enger Verbindung zur Elastizität des Sensorschafts zu interpretieren. Beispielsweise verhindert die starke Krümmung des Sensorschafts in Folge eines kleinen Objektabstandes eine Detektion von makroskopischen Oberflächenelementen wie Rillen und Stufen, da sich der Sensorschaft in dieser Konfiguration wie ein adaptiver morphologischer Filter auswirkt und damit eine inhärente Eigenschaft des Sensorsystems ist. Der Übergang zwischen der makroskopischen und mikroskopischen Oberflächenstruktur wird durch den Durchmesser der Spitze des Sensorschafts bestimmt. Oberflächenstrukturelemente, die kleiner als dieser Durchmesser sind, gehören zur mikroskopischen Oberflächenstruktur. Daraus folgt, dass auch der Durchmesser der Spitze eine inhärente Eigenschaft ist. Eine weitere inhärente Eigenschaft wird bei der Detektion einer mikroskopischen Oberflächenstruktur erkennbar. Wenn der, sich im Kontakt befindende, stark verformte, Sensorschaft so bewegt wird, dass die konkave Seite des Sensorschafts in Bewegungsrichtung zeigt, werden die erfassten Signale verstärkt - im Vergleich zur entgegengesetzten Bewegungsrichtung. Unter Berücksichtigung der genannten und weiterer Ideen, wird der durch eine natürliche Vibirsse inspirierte Sensor in der vorliegenden Arbeit untersucht.


Book Synopsis Bio-inspired Tactile Sensing : Analysis of the Inherent Characteristics of a Vibrissa-like Tactile Sensor by : Moritz Scharff

Download or read book Bio-inspired Tactile Sensing : Analysis of the Inherent Characteristics of a Vibrissa-like Tactile Sensor written by Moritz Scharff and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die Weiterentwicklung taktiler Sensoren gewinnt an Bedeutung bspw. durch eine verstärkte Anwendung taktiler Sensoren zur Navigation in unbekannten Umgebungen von autonomen mobilen Robotern. Eine Möglichkeit taktile Sensoren weiter zu entwickeln ist, sich - wie auch schon andere Entwicklungen zeigen - der Natur zu bedienen, Vorbilder zu identifizieren, diese fundamental zu analysieren und als wesentlich befundene Eigenschaften und Funktionstüchtigkeiten zu adaptieren. Ratten besitzen auffällige Tasthaare an beiden Seiten der Schnauze, sogenannte Vibrissen. Diese sind gekennzeichnet durch einen langen, schlanken und natürlich vorgekrümmten Haarschaft mit konischem Querschnittsverlauf. Der Haarschaft wird von einem Haarfollikel gehalten, der sich unter der Haut befindet und in dem überdies Mechanorezeptoren zur Reizdetektion zu finden sind. Während der Erkundung von unbekannten Umgebungen und Objekten setzen Ratten ihre Vibrissen ein, um bspw. die Form oder Textur eines Objektes zu bestimmen, indem die Vibrisse daran entlang bewegt wird. Die Informationsaufnahme wird im Haarfollikel durch die Mechanorezeptoren realisiert. Die vorliegende Arbeit leistet einen Beitrag zum übergeordneten Ziel, die Eigenschaften und Einsatzmöglichkeiten dieses komplexen und hochentwickelten Sensorsystems der Natur für technische Anwendungen nutzbar zu machen. Die Eigenschaften einer Vibrisse sind synergetisch und beeinflussen ihre Funktionen in bedeutendem Maß. Deshalb wird das natürliche Vorbild detailliert analysiert und mit den Konzepten des biomechatronischen Systems und des Reizleitungsapparats beschrieben und auf dieser Basis ein Vibrissen-ähnlicher Sensor entworfen, um die inhärenten Eigenschaften eines solchen Sensorsystems zu untersuchen. Um die Funktionstüchtigkeit des entworfenen Protoyps, aufgebaut auf Basis der detaillierten Vorabanalyse, zu untersuchen, werden verschiedene Testobjekte, einschließlich verschiedener Oberflächenbeschaffenheiten, mit dem Sensor vermessen. Anhand der aufgezeichneten Messsignale zeigt sich, dass ein Objekt durch seine generelle Form sowie seine makroskopische und mikroskopische Oberflächenstruktur beschrieben werden kann. Die genannten Informationen überlagern sich in den gemessenen Signalen und müssen für eine weiterführende Auswertung extrahiert werden. Der Abstand zwischen Sensorlagerung und Objekt hat entscheidenden Einfluss. Makroskopische Oberflächenelemente lassen sich im Abstand von 80% der Länge des Sensorschafts besonders gut detektieren. Ein mittlerer Abstand, ca. 60% der Länge des Sensorschafts, unterstützt die Erfassung der Eigenschaften einer mikroskopischen Textur. Hingegen ist ein kleiner Abstand von 45% der Sensorschaftlänge besonders geeignet zur Detektion der generellen Form des Objekts. Diese Effekte sind in enger Verbindung zur Elastizität des Sensorschafts zu interpretieren. Beispielsweise verhindert die starke Krümmung des Sensorschafts in Folge eines kleinen Objektabstandes eine Detektion von makroskopischen Oberflächenelementen wie Rillen und Stufen, da sich der Sensorschaft in dieser Konfiguration wie ein adaptiver morphologischer Filter auswirkt und damit eine inhärente Eigenschaft des Sensorsystems ist. Der Übergang zwischen der makroskopischen und mikroskopischen Oberflächenstruktur wird durch den Durchmesser der Spitze des Sensorschafts bestimmt. Oberflächenstrukturelemente, die kleiner als dieser Durchmesser sind, gehören zur mikroskopischen Oberflächenstruktur. Daraus folgt, dass auch der Durchmesser der Spitze eine inhärente Eigenschaft ist. Eine weitere inhärente Eigenschaft wird bei der Detektion einer mikroskopischen Oberflächenstruktur erkennbar. Wenn der, sich im Kontakt befindende, stark verformte, Sensorschaft so bewegt wird, dass die konkave Seite des Sensorschafts in Bewegungsrichtung zeigt, werden die erfassten Signale verstärkt - im Vergleich zur entgegengesetzten Bewegungsrichtung. Unter Berücksichtigung der genannten und weiterer Ideen, wird der durch eine natürliche Vibirsse inspirierte Sensor in der vorliegenden Arbeit untersucht.


Active Touch Sensing

Active Touch Sensing

Author: Robyn Grant

Publisher: Frontiers E-books

Published: 2014-07-14

Total Pages: 174

ISBN-13: 2889192482

DOWNLOAD EBOOK

Active touch can be described as the control of the position and movement of tactile sensing systems to facilitate information gain. In other words, it is finding out about the world by reaching out and exploring—sensing by ‘touching’ as opposed to ‘being touched’. In this Research Topic (with cross-posting in both Behavioural Neuroscience and Neurorobotics) we welcomed articles from junior researchers on any aspect of active touch. We were especially interested in articles on the behavioral, physiological and neuronal underpinnings of active touch in a range of species (including humans) for submission to Frontiers in Behavioural Neuroscience. We also welcomed articles describing robotic systems with biomimetic or bio-inspired tactile sensing systems for publication in Frontiers in Neurorobotics.


Book Synopsis Active Touch Sensing by : Robyn Grant

Download or read book Active Touch Sensing written by Robyn Grant and published by Frontiers E-books. This book was released on 2014-07-14 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Active touch can be described as the control of the position and movement of tactile sensing systems to facilitate information gain. In other words, it is finding out about the world by reaching out and exploring—sensing by ‘touching’ as opposed to ‘being touched’. In this Research Topic (with cross-posting in both Behavioural Neuroscience and Neurorobotics) we welcomed articles from junior researchers on any aspect of active touch. We were especially interested in articles on the behavioral, physiological and neuronal underpinnings of active touch in a range of species (including humans) for submission to Frontiers in Behavioural Neuroscience. We also welcomed articles describing robotic systems with biomimetic or bio-inspired tactile sensing systems for publication in Frontiers in Neurorobotics.


Development of a Bio-inspired MEMS Based Tactile Sensor Array for an Artificial Finger

Development of a Bio-inspired MEMS Based Tactile Sensor Array for an Artificial Finger

Author: Hassena Bashir Muhammad

Publisher:

Published: 2011

Total Pages: 208

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Development of a Bio-inspired MEMS Based Tactile Sensor Array for an Artificial Finger by : Hassena Bashir Muhammad

Download or read book Development of a Bio-inspired MEMS Based Tactile Sensor Array for an Artificial Finger written by Hassena Bashir Muhammad and published by . This book was released on 2011 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Development of a Bio-inspired Magnetostrictive Flow and Tactile Sensor

Development of a Bio-inspired Magnetostrictive Flow and Tactile Sensor

Author: Michael Adam Marana

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Development of a Bio-inspired Magnetostrictive Flow and Tactile Sensor by : Michael Adam Marana

Download or read book Development of a Bio-inspired Magnetostrictive Flow and Tactile Sensor written by Michael Adam Marana and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Biomimetic Technologies

Biomimetic Technologies

Author: Trung Dung Ngo

Publisher: Woodhead Publishing

Published: 2015-07-24

Total Pages: 394

ISBN-13: 0081002602

DOWNLOAD EBOOK

Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG’s) and biologically inspired antenna arrays. Includes a solid overview of modern artificial intelligence as background to the principles of biomimetic engineering Reviews a selection of key bio-inspired materials and sensors, highlighting their current strengths and future potential Features cutting-edge examples of biomimetic technologies employed for a broad range of applications


Book Synopsis Biomimetic Technologies by : Trung Dung Ngo

Download or read book Biomimetic Technologies written by Trung Dung Ngo and published by Woodhead Publishing. This book was released on 2015-07-24 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG’s) and biologically inspired antenna arrays. Includes a solid overview of modern artificial intelligence as background to the principles of biomimetic engineering Reviews a selection of key bio-inspired materials and sensors, highlighting their current strengths and future potential Features cutting-edge examples of biomimetic technologies employed for a broad range of applications


Robotic Tactile Sensing

Robotic Tactile Sensing

Author: Ravinder S. Dahiya

Publisher: Springer Science & Business Media

Published: 2012-07-29

Total Pages: 258

ISBN-13: 9400705794

DOWNLOAD EBOOK

Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. The efforts during last four decades or so have yielded a wide spectrum of tactile sensing technologies and engineered solutions for both intrinsic and extrinsic touch sensors. Nowadays, new materials and structures are being explored for obtaining robotic skin with physical features like bendable, conformable, and stretchable. Such features are important for covering various body parts of robots or 3D surfaces. Nonetheless, there exist many more hardware, software and application related issues that must be considered to make tactile sensing an effective component of future robotic platforms. This book presents an in-depth analysis of various system related issues and presents the trade-offs one may face while developing an effective tactile sensing system. For this purpose, human touch sensing has also been explored. The design hints coming out of the investigations into human sense of touch can be useful in improving the effectiveness of tactile sensory modality in robotics and other machines. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. The concept of semiconductor devices based sensors is an interesting one, as it allows compact and fast tactile sensing systems with capabilities such as human-like spatio-temporal resolution. This book presents a comprehensive description of semiconductor devices based tactile sensing. In particular, novel Piezo Oxide Semiconductor Field Effect Transistor (POSFET) based approach for high resolution tactile sensing has been discussed in detail. Finally, the extension of semiconductors devices based sensors concept to large and flexile areas has been discussed for obtaining robotic or electronic skin. With its multidisciplinary scope, this book is suitable for graduate students and researchers coming from diverse areas such robotics (bio-robots, humanoids, rehabilitation etc.), applied materials, humans touch sensing, electronics, microsystems, and instrumentation. To better explain the concepts the text is supported by large number of figures.


Book Synopsis Robotic Tactile Sensing by : Ravinder S. Dahiya

Download or read book Robotic Tactile Sensing written by Ravinder S. Dahiya and published by Springer Science & Business Media. This book was released on 2012-07-29 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. The efforts during last four decades or so have yielded a wide spectrum of tactile sensing technologies and engineered solutions for both intrinsic and extrinsic touch sensors. Nowadays, new materials and structures are being explored for obtaining robotic skin with physical features like bendable, conformable, and stretchable. Such features are important for covering various body parts of robots or 3D surfaces. Nonetheless, there exist many more hardware, software and application related issues that must be considered to make tactile sensing an effective component of future robotic platforms. This book presents an in-depth analysis of various system related issues and presents the trade-offs one may face while developing an effective tactile sensing system. For this purpose, human touch sensing has also been explored. The design hints coming out of the investigations into human sense of touch can be useful in improving the effectiveness of tactile sensory modality in robotics and other machines. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. The concept of semiconductor devices based sensors is an interesting one, as it allows compact and fast tactile sensing systems with capabilities such as human-like spatio-temporal resolution. This book presents a comprehensive description of semiconductor devices based tactile sensing. In particular, novel Piezo Oxide Semiconductor Field Effect Transistor (POSFET) based approach for high resolution tactile sensing has been discussed in detail. Finally, the extension of semiconductors devices based sensors concept to large and flexile areas has been discussed for obtaining robotic or electronic skin. With its multidisciplinary scope, this book is suitable for graduate students and researchers coming from diverse areas such robotics (bio-robots, humanoids, rehabilitation etc.), applied materials, humans touch sensing, electronics, microsystems, and instrumentation. To better explain the concepts the text is supported by large number of figures.