Biomedical Engineering and its Applications in Healthcare

Biomedical Engineering and its Applications in Healthcare

Author: Sudip Paul

Publisher: Springer Nature

Published: 2019-11-08

Total Pages: 738

ISBN-13: 9811337055

DOWNLOAD EBOOK

This book illustrates the significance of biomedical engineering in modern healthcare systems. Biomedical engineering plays an important role in a range of areas, from diagnosis and analysis to treatment and recovery and has entered the public consciousness through the proliferation of implantable medical devices, such as pacemakers and artificial hips, as well as the more futuristic technologies such as stem cell engineering and 3-D printing of biological organs. Starting with an introduction to biomedical engineering, the book then discusses various tools and techniques for medical diagnostics and treatment and recent advances. It also provides comprehensive and integrated information on rehabilitation engineering, including the design of artificial body parts, and the underlying principles, and standards. It also presents a conceptual framework to clarify the relationship between ethical policies in medical practice and philosophical moral reasoning. Lastly, the book highlights a number of challenges associated with modern healthcare technologies.


Book Synopsis Biomedical Engineering and its Applications in Healthcare by : Sudip Paul

Download or read book Biomedical Engineering and its Applications in Healthcare written by Sudip Paul and published by Springer Nature. This book was released on 2019-11-08 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates the significance of biomedical engineering in modern healthcare systems. Biomedical engineering plays an important role in a range of areas, from diagnosis and analysis to treatment and recovery and has entered the public consciousness through the proliferation of implantable medical devices, such as pacemakers and artificial hips, as well as the more futuristic technologies such as stem cell engineering and 3-D printing of biological organs. Starting with an introduction to biomedical engineering, the book then discusses various tools and techniques for medical diagnostics and treatment and recent advances. It also provides comprehensive and integrated information on rehabilitation engineering, including the design of artificial body parts, and the underlying principles, and standards. It also presents a conceptual framework to clarify the relationship between ethical policies in medical practice and philosophical moral reasoning. Lastly, the book highlights a number of challenges associated with modern healthcare technologies.


Engineering-Medicine

Engineering-Medicine

Author: Lawrence S. Chan

Publisher: CRC Press

Published: 2019-05-15

Total Pages: 420

ISBN-13: 1351012258

DOWNLOAD EBOOK

This transformative textbook, first of its kind to incorporate engineering principles into medical education and practice, will be a useful tool for physicians, medical students, biomedical engineers, biomedical engineering students, and healthcare executives. The central approach of the proposed textbook is to provide principles of engineering as applied to medicine and guide the medical students and physicians in achieving the goal of solving medical problems by engineering principles and methodologies. For the medical students and physicians, this proposed textbook will train them to “think like an engineer and act as a physician”. The textbook contains a variety of teaching techniques including class lectures, small group discussions, group projects, and individual projects, with the goals of not just helping students and professionals to understand the principles and methods of engineering, but also guiding students and professionals to develop real-life solutions. For the biomedical engineers and biomedical engineering students, this proposed textbook will give them a large framework and global perspective of how engineering principles could positively impact real-life medicine. To the healthcare executives, the goal of this book is to provide them general guidance and specific examples of applying engineering principles in implementing solution-oriented methodology to their healthcare enterprises. Overall goals of this book are to help improve the overall quality and efficiency of healthcare delivery and outcomes.


Book Synopsis Engineering-Medicine by : Lawrence S. Chan

Download or read book Engineering-Medicine written by Lawrence S. Chan and published by CRC Press. This book was released on 2019-05-15 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This transformative textbook, first of its kind to incorporate engineering principles into medical education and practice, will be a useful tool for physicians, medical students, biomedical engineers, biomedical engineering students, and healthcare executives. The central approach of the proposed textbook is to provide principles of engineering as applied to medicine and guide the medical students and physicians in achieving the goal of solving medical problems by engineering principles and methodologies. For the medical students and physicians, this proposed textbook will train them to “think like an engineer and act as a physician”. The textbook contains a variety of teaching techniques including class lectures, small group discussions, group projects, and individual projects, with the goals of not just helping students and professionals to understand the principles and methods of engineering, but also guiding students and professionals to develop real-life solutions. For the biomedical engineers and biomedical engineering students, this proposed textbook will give them a large framework and global perspective of how engineering principles could positively impact real-life medicine. To the healthcare executives, the goal of this book is to provide them general guidance and specific examples of applying engineering principles in implementing solution-oriented methodology to their healthcare enterprises. Overall goals of this book are to help improve the overall quality and efficiency of healthcare delivery and outcomes.


Applications of Multi-Criteria Decision-Making Theories in Healthcare and Biomedical Engineering

Applications of Multi-Criteria Decision-Making Theories in Healthcare and Biomedical Engineering

Author: Ilker Ozsahin

Publisher: Academic Press

Published: 2021-03-25

Total Pages: 334

ISBN-13: 0128240873

DOWNLOAD EBOOK

Applications of Multi-Criteria Decision-Making Theories in Healthcare and Biomedical Engineering contains several practical applications on how decision-making theory could be used in solving problems relating to the selection of best alternatives. The book focuses on assisting decision-makers (government, organizations, companies, general public, etc.) in making the best and most appropriate decision when confronted with multiple alternatives. The purpose of the analytical MCDM techniques is to support decision makers under uncertainty and conflicting criteria while making logical decisions. The knowledge of the alternatives of the real-life problems, properties of their parameters, and the priority given to the parameters have a great effect on consequences in decision-making. In this book, the application of MCDM has been provided for the real-life problems in health and biomedical engineering issues. Provides a comprehensive analysis and application multi-criteria decision-making methods Presents detail information about MCDM and their usage Covers state-of-the-art MCDM methods and offers applications of MCDM for health and biomedical engineering purposes


Book Synopsis Applications of Multi-Criteria Decision-Making Theories in Healthcare and Biomedical Engineering by : Ilker Ozsahin

Download or read book Applications of Multi-Criteria Decision-Making Theories in Healthcare and Biomedical Engineering written by Ilker Ozsahin and published by Academic Press. This book was released on 2021-03-25 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Multi-Criteria Decision-Making Theories in Healthcare and Biomedical Engineering contains several practical applications on how decision-making theory could be used in solving problems relating to the selection of best alternatives. The book focuses on assisting decision-makers (government, organizations, companies, general public, etc.) in making the best and most appropriate decision when confronted with multiple alternatives. The purpose of the analytical MCDM techniques is to support decision makers under uncertainty and conflicting criteria while making logical decisions. The knowledge of the alternatives of the real-life problems, properties of their parameters, and the priority given to the parameters have a great effect on consequences in decision-making. In this book, the application of MCDM has been provided for the real-life problems in health and biomedical engineering issues. Provides a comprehensive analysis and application multi-criteria decision-making methods Presents detail information about MCDM and their usage Covers state-of-the-art MCDM methods and offers applications of MCDM for health and biomedical engineering purposes


Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications

Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications

Author: Shukla, Anupam

Publisher: IGI Global

Published: 2010-06-30

Total Pages: 376

ISBN-13: 1615209786

DOWNLOAD EBOOK

Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications helps young researchers and developers understand the basics of the field while highlighting the various developments over the last several years. Broad in scope and comprehensive in depth, this volume serves as a base text for any project or work into the domain of medical diagnosis or other areas of medical engineering.


Book Synopsis Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications by : Shukla, Anupam

Download or read book Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications written by Shukla, Anupam and published by IGI Global. This book was released on 2010-06-30 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications helps young researchers and developers understand the basics of the field while highlighting the various developments over the last several years. Broad in scope and comprehensive in depth, this volume serves as a base text for any project or work into the domain of medical diagnosis or other areas of medical engineering.


Internet of Things in Biomedical Engineering

Internet of Things in Biomedical Engineering

Author: Valentina E. Balas

Publisher: Academic Press

Published: 2019-06-14

Total Pages: 379

ISBN-13: 0128173572

DOWNLOAD EBOOK

Internet of Things in Biomedical Engineering presents the most current research in Internet of Things (IoT) applications for clinical patient monitoring and treatment. The book takes a systems-level approach for both human-factors and the technical aspects of networking, databases and privacy. Sections delve into the latest advances and cutting-edge technologies, starting with an overview of the Internet of Things and biomedical engineering, as well as a focus on ‘daily life.’ Contributors from various experts then discuss ‘computer assisted anthropology,’ CLOUDFALL, and image guided surgery, as well as bio-informatics and data mining. This comprehensive coverage of the industry and technology is a perfect resource for students and researchers interested in the topic. Presents recent advances in IoT for biomedical engineering, covering biometrics, bioinformatics, artificial intelligence, computer vision and various network applications Discusses big data and data mining in healthcare and other IoT based biomedical data analysis Includes discussions on a variety of IoT applications and medical information systems Includes case studies and applications, as well as examples on how to automate data analysis with Perl R in IoT


Book Synopsis Internet of Things in Biomedical Engineering by : Valentina E. Balas

Download or read book Internet of Things in Biomedical Engineering written by Valentina E. Balas and published by Academic Press. This book was released on 2019-06-14 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internet of Things in Biomedical Engineering presents the most current research in Internet of Things (IoT) applications for clinical patient monitoring and treatment. The book takes a systems-level approach for both human-factors and the technical aspects of networking, databases and privacy. Sections delve into the latest advances and cutting-edge technologies, starting with an overview of the Internet of Things and biomedical engineering, as well as a focus on ‘daily life.’ Contributors from various experts then discuss ‘computer assisted anthropology,’ CLOUDFALL, and image guided surgery, as well as bio-informatics and data mining. This comprehensive coverage of the industry and technology is a perfect resource for students and researchers interested in the topic. Presents recent advances in IoT for biomedical engineering, covering biometrics, bioinformatics, artificial intelligence, computer vision and various network applications Discusses big data and data mining in healthcare and other IoT based biomedical data analysis Includes discussions on a variety of IoT applications and medical information systems Includes case studies and applications, as well as examples on how to automate data analysis with Perl R in IoT


Introduction to Biomedical Engineering

Introduction to Biomedical Engineering

Author: John Enderle

Publisher: Elsevier

Published: 2005-05-20

Total Pages: 1141

ISBN-13: 0080473148

DOWNLOAD EBOOK

Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use


Book Synopsis Introduction to Biomedical Engineering by : John Enderle

Download or read book Introduction to Biomedical Engineering written by John Enderle and published by Elsevier. This book was released on 2005-05-20 with total page 1141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use


Medical Imaging Systems

Medical Imaging Systems

Author: Andreas Maier

Publisher: Springer

Published: 2018-08-02

Total Pages: 263

ISBN-13: 3319965204

DOWNLOAD EBOOK

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.


Book Synopsis Medical Imaging Systems by : Andreas Maier

Download or read book Medical Imaging Systems written by Andreas Maier and published by Springer. This book was released on 2018-08-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.


Handbook of Deep Learning in Biomedical Engineering

Handbook of Deep Learning in Biomedical Engineering

Author: Valentina Emilia Balas

Publisher: Academic Press

Published: 2020-11-12

Total Pages: 320

ISBN-13: 0128230479

DOWNLOAD EBOOK

Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer’s, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer’s, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography


Book Synopsis Handbook of Deep Learning in Biomedical Engineering by : Valentina Emilia Balas

Download or read book Handbook of Deep Learning in Biomedical Engineering written by Valentina Emilia Balas and published by Academic Press. This book was released on 2020-11-12 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer’s, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer’s, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography


Biomedical Engineering and Information Systems: Technologies, Tools and Applications

Biomedical Engineering and Information Systems: Technologies, Tools and Applications

Author: Shukla, Anupam

Publisher: IGI Global

Published: 2010-07-31

Total Pages: 384

ISBN-13: 161692005X

DOWNLOAD EBOOK

"Bridging the disciplines of engineering and medicine, this book informs researchers, clinicians, and practitioners of the latest developments in diagnostic tools, decision support systems, and intelligent devices that impact and redefine research in and delivery of medical services"--Provided by publisher.


Book Synopsis Biomedical Engineering and Information Systems: Technologies, Tools and Applications by : Shukla, Anupam

Download or read book Biomedical Engineering and Information Systems: Technologies, Tools and Applications written by Shukla, Anupam and published by IGI Global. This book was released on 2010-07-31 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Bridging the disciplines of engineering and medicine, this book informs researchers, clinicians, and practitioners of the latest developments in diagnostic tools, decision support systems, and intelligent devices that impact and redefine research in and delivery of medical services"--Provided by publisher.


Biomedical Signal Processing for Healthcare Applications

Biomedical Signal Processing for Healthcare Applications

Author: Varun Bajaj

Publisher: CRC Press

Published: 2021-07-21

Total Pages: 336

ISBN-13: 1000413306

DOWNLOAD EBOOK

This book examines the use of biomedical signal processing—EEG, EMG, and ECG—in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.


Book Synopsis Biomedical Signal Processing for Healthcare Applications by : Varun Bajaj

Download or read book Biomedical Signal Processing for Healthcare Applications written by Varun Bajaj and published by CRC Press. This book was released on 2021-07-21 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the use of biomedical signal processing—EEG, EMG, and ECG—in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.