Catalytic, Photocatalytic and Electrocatalytic Processes for the Valorisation of CO²

Catalytic, Photocatalytic and Electrocatalytic Processes for the Valorisation of CO²

Author: Ilenia Rossetti

Publisher: MDPI

Published: 2019-11-19

Total Pages: 134

ISBN-13: 303921778X

DOWNLOAD EBOOK

Increasing attention is being paid to the development of effective technologies for the sequestration of CO2 and its storage. Hopefully, this will result in processes that can lead to its valorisation as a chemical, e.g., for the regeneration of fuels, but also for the production of intermediates. These are usually energy demands and rather slow processes, requiring energy input and catalysts. Some examples are the innovative strategies for the hydrogenation, photoconversion, or electroreduction of carbon dioxide. This book collects original research papers, reviews, and commentaries focused on the challenges related to the valorisation and conversion of CO2.


Book Synopsis Catalytic, Photocatalytic and Electrocatalytic Processes for the Valorisation of CO² by : Ilenia Rossetti

Download or read book Catalytic, Photocatalytic and Electrocatalytic Processes for the Valorisation of CO² written by Ilenia Rossetti and published by MDPI. This book was released on 2019-11-19 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing attention is being paid to the development of effective technologies for the sequestration of CO2 and its storage. Hopefully, this will result in processes that can lead to its valorisation as a chemical, e.g., for the regeneration of fuels, but also for the production of intermediates. These are usually energy demands and rather slow processes, requiring energy input and catalysts. Some examples are the innovative strategies for the hydrogenation, photoconversion, or electroreduction of carbon dioxide. This book collects original research papers, reviews, and commentaries focused on the challenges related to the valorisation and conversion of CO2.


Catalytic, Photocatalytic and Electrocatalytic Processes for the Valorisation of CO2

Catalytic, Photocatalytic and Electrocatalytic Processes for the Valorisation of CO2

Author: Ilenia Rossetti

Publisher:

Published: 2019

Total Pages: 132

ISBN-13: 9783039217793

DOWNLOAD EBOOK

Increasing attention is being paid to the development of effective technologies for the sequestration of CO2 and its storage. Hopefully, this will result in processes that can lead to its valorisation as a chemical, e.g., for the regeneration of fuels, but also for the production of intermediates. These are usually energy demands and rather slow processes, requiring energy input and catalysts. Some examples are the innovative strategies for the hydrogenation, photoconversion, or electroreduction of carbon dioxide. This book collects original research papers, reviews, and commentaries focused on the challenges related to the valorisation and conversion of CO2.


Book Synopsis Catalytic, Photocatalytic and Electrocatalytic Processes for the Valorisation of CO2 by : Ilenia Rossetti

Download or read book Catalytic, Photocatalytic and Electrocatalytic Processes for the Valorisation of CO2 written by Ilenia Rossetti and published by . This book was released on 2019 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing attention is being paid to the development of effective technologies for the sequestration of CO2 and its storage. Hopefully, this will result in processes that can lead to its valorisation as a chemical, e.g., for the regeneration of fuels, but also for the production of intermediates. These are usually energy demands and rather slow processes, requiring energy input and catalysts. Some examples are the innovative strategies for the hydrogenation, photoconversion, or electroreduction of carbon dioxide. This book collects original research papers, reviews, and commentaries focused on the challenges related to the valorisation and conversion of CO2.


Photo- and Electro-Catalytic Processes

Photo- and Electro-Catalytic Processes

Author: Jianmin Ma

Publisher: John Wiley & Sons

Published: 2022-01-25

Total Pages: 596

ISBN-13: 352734859X

DOWNLOAD EBOOK

Explore green catalytic reactions with this reference from a renowned leader in the field Green reactions—like photo-, photoelectro-, and electro-catalytic reactions—offer viable technologies to solve difficult problems without significant damage to the environment. In particular, some gas-involved reactions are especially useful in the creation of liquid fuels and cost-effective products. In Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction, award-winning researcher Jianmin Ma delivers a comprehensive overview of photo-, electro-, and photoelectron-catalysts in a variety of processes, including O2 reduction, CO2 reduction, N2 reduction, H2 production, water oxidation, oxygen evolution, and hydrogen evolution. The book offers detailed information on the underlying mechanisms, costs, and synthetic methods of catalysts. Filled with authoritative and critical information on green catalytic processes that promise to answer many of our most pressing energy and environmental questions, this book also includes: Thorough introductions to electrocatalytic oxygen reduction and evolution reactions, as well as electrocatalytic hydrogen evolution reactions Comprehensive explorations of electrocatalytic water splitting, CO2 reduction, and N2 reduction Practical discussions of photoelectrocatalytic H2 production, water splitting, and CO2 reduction In-depth examinations of photoelectrochemical oxygen evolution and nitrogen reduction Perfect for catalytic chemists and photochemists, Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction also belongs in the libraries of materials scientists and inorganic chemists seeking a one-stop resource on the novel aspects of photo-, electro-, and photoelectro-catalytic reactions.


Book Synopsis Photo- and Electro-Catalytic Processes by : Jianmin Ma

Download or read book Photo- and Electro-Catalytic Processes written by Jianmin Ma and published by John Wiley & Sons. This book was released on 2022-01-25 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore green catalytic reactions with this reference from a renowned leader in the field Green reactions—like photo-, photoelectro-, and electro-catalytic reactions—offer viable technologies to solve difficult problems without significant damage to the environment. In particular, some gas-involved reactions are especially useful in the creation of liquid fuels and cost-effective products. In Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction, award-winning researcher Jianmin Ma delivers a comprehensive overview of photo-, electro-, and photoelectron-catalysts in a variety of processes, including O2 reduction, CO2 reduction, N2 reduction, H2 production, water oxidation, oxygen evolution, and hydrogen evolution. The book offers detailed information on the underlying mechanisms, costs, and synthetic methods of catalysts. Filled with authoritative and critical information on green catalytic processes that promise to answer many of our most pressing energy and environmental questions, this book also includes: Thorough introductions to electrocatalytic oxygen reduction and evolution reactions, as well as electrocatalytic hydrogen evolution reactions Comprehensive explorations of electrocatalytic water splitting, CO2 reduction, and N2 reduction Practical discussions of photoelectrocatalytic H2 production, water splitting, and CO2 reduction In-depth examinations of photoelectrochemical oxygen evolution and nitrogen reduction Perfect for catalytic chemists and photochemists, Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction also belongs in the libraries of materials scientists and inorganic chemists seeking a one-stop resource on the novel aspects of photo-, electro-, and photoelectro-catalytic reactions.


Water Photo- and Electro-Catalysis

Water Photo- and Electro-Catalysis

Author: Shaohua Shen

Publisher: John Wiley & Sons

Published: 2024-02-21

Total Pages: 485

ISBN-13: 3527831010

DOWNLOAD EBOOK

Water Photo- and Electro-Catalysis Introduce yourself to the cutting-edge processes of water photo- and electro-catalysis with this important guide Photocatalysis and electrocatalysis reactions involving water are becoming an increasingly important component of energy and sustainability research. Water electrocatalysis and photo-electrocatalysis promise to have a significant impact on human energy production and its by-products, and to play a substantial role in solutions to global energy and environmental crises. Familiarity with these processes will be critical for sustainable energy production in the coming years. Water Photo- and Electro-Catalysis provides a detailed and readable introduction to these processes and their attendant technologies. It covers mechanisms, materials, and devices that catalyze water-based energy conversion, as well as introducing the theoretical principles that are driving the development of new technologies in this area. The result is an essential book for researchers and materials scientists in a range of fields. Water Photo- and Electro-Catalysis readers will also find: An editorial team with decades of combined experience in energy and materials science research Detailed treatment of electrocatalysis processes for hydrogen evolution (HER), oxygen/hydrogen peroxide evolution (OER/HPER), and more Analysis of mechanisms including heterogenous vs. homogenous photocatalysis, electrodes-based photo-electrocatalysis, and photovoltaic-electrocatalysis Water Photo- and Electro-Catalysis is a valuable reference for catalytic chemists, materials scientists, energy chemists, and all research and industry professionals in photo(electro)catalysis and sustainable energy fields.


Book Synopsis Water Photo- and Electro-Catalysis by : Shaohua Shen

Download or read book Water Photo- and Electro-Catalysis written by Shaohua Shen and published by John Wiley & Sons. This book was released on 2024-02-21 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water Photo- and Electro-Catalysis Introduce yourself to the cutting-edge processes of water photo- and electro-catalysis with this important guide Photocatalysis and electrocatalysis reactions involving water are becoming an increasingly important component of energy and sustainability research. Water electrocatalysis and photo-electrocatalysis promise to have a significant impact on human energy production and its by-products, and to play a substantial role in solutions to global energy and environmental crises. Familiarity with these processes will be critical for sustainable energy production in the coming years. Water Photo- and Electro-Catalysis provides a detailed and readable introduction to these processes and their attendant technologies. It covers mechanisms, materials, and devices that catalyze water-based energy conversion, as well as introducing the theoretical principles that are driving the development of new technologies in this area. The result is an essential book for researchers and materials scientists in a range of fields. Water Photo- and Electro-Catalysis readers will also find: An editorial team with decades of combined experience in energy and materials science research Detailed treatment of electrocatalysis processes for hydrogen evolution (HER), oxygen/hydrogen peroxide evolution (OER/HPER), and more Analysis of mechanisms including heterogenous vs. homogenous photocatalysis, electrodes-based photo-electrocatalysis, and photovoltaic-electrocatalysis Water Photo- and Electro-Catalysis is a valuable reference for catalytic chemists, materials scientists, energy chemists, and all research and industry professionals in photo(electro)catalysis and sustainable energy fields.


Carbon Dioxide Electrochemistry

Carbon Dioxide Electrochemistry

Author: Marc Robert

Publisher: Royal Society of Chemistry

Published: 2020-10-14

Total Pages: 461

ISBN-13: 1788019407

DOWNLOAD EBOOK

Conversion of light and electricity to chemicals is an important component of a sustainable energy system. The exponential growth in renewable energy generation implies that there will be strong market pull for chemical energy storage technology in the near future, and here carbon dioxide utilization must play a central role. The electrochemical conversion of carbon dioxide is key in achieving these goals. Carbon Dioxide Electrochemistry showcases different advances in the field, and bridges the two worlds of homogeneous and heterogeneous catalysis that are often perceived as in competition in research. Chapters cover homogeneous and heterogeneous electrochemical reduction of CO2, nanostructures for CO2 reduction, hybrid systems for CO2 conversion, electrochemical reactors, theoretical approaches to catalytic reduction of CO2, and photoelectrodes for electrochemical conversion. With internationally well-known editors and authors, this book will appeal to graduate students and researchers in energy, catalysis, chemical engineering and chemistry who work on carbon dioxide.


Book Synopsis Carbon Dioxide Electrochemistry by : Marc Robert

Download or read book Carbon Dioxide Electrochemistry written by Marc Robert and published by Royal Society of Chemistry. This book was released on 2020-10-14 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conversion of light and electricity to chemicals is an important component of a sustainable energy system. The exponential growth in renewable energy generation implies that there will be strong market pull for chemical energy storage technology in the near future, and here carbon dioxide utilization must play a central role. The electrochemical conversion of carbon dioxide is key in achieving these goals. Carbon Dioxide Electrochemistry showcases different advances in the field, and bridges the two worlds of homogeneous and heterogeneous catalysis that are often perceived as in competition in research. Chapters cover homogeneous and heterogeneous electrochemical reduction of CO2, nanostructures for CO2 reduction, hybrid systems for CO2 conversion, electrochemical reactors, theoretical approaches to catalytic reduction of CO2, and photoelectrodes for electrochemical conversion. With internationally well-known editors and authors, this book will appeal to graduate students and researchers in energy, catalysis, chemical engineering and chemistry who work on carbon dioxide.


New and Future Developments in Catalysis

New and Future Developments in Catalysis

Author: Narcís Homs

Publisher: Elsevier Inc. Chapters

Published: 2013-07-11

Total Pages: 50

ISBN-13: 0128082208

DOWNLOAD EBOOK


Book Synopsis New and Future Developments in Catalysis by : Narcís Homs

Download or read book New and Future Developments in Catalysis written by Narcís Homs and published by Elsevier Inc. Chapters. This book was released on 2013-07-11 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Photocatalysis for Environmental Remediation and Energy Production

Photocatalysis for Environmental Remediation and Energy Production

Author: Seema Garg

Publisher: Springer Nature

Published: 2023-05-06

Total Pages: 483

ISBN-13: 3031277074

DOWNLOAD EBOOK

This book explores the modification of various synthesis processes to enhance the photocatalytic activity in varied applications in the fields of environmental remediation and energy production. It outlines the enhancement of photocatalytic activity via alloys synthesis, thin film coatings, electro-spun nanofibers and 3D printed photocatalysts. The book further states the diverse applications of materials for degrading organic pollutants and airborne pathogens, improving indoor air quality and as a potential antimicrobial agent. The application of photocatalysts in green organic synthesis, biomedical field and in hydrogen evolution are also presented in the book. It covers theoretical studies of photocatalytic material and conversion of CO2 to value added chemical feed stocks. The book is of relevance to researchers in academia and industry alike in the fields of material science, environmental science & technology, photocatalytic applications and in energy generation and conversion.


Book Synopsis Photocatalysis for Environmental Remediation and Energy Production by : Seema Garg

Download or read book Photocatalysis for Environmental Remediation and Energy Production written by Seema Garg and published by Springer Nature. This book was released on 2023-05-06 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the modification of various synthesis processes to enhance the photocatalytic activity in varied applications in the fields of environmental remediation and energy production. It outlines the enhancement of photocatalytic activity via alloys synthesis, thin film coatings, electro-spun nanofibers and 3D printed photocatalysts. The book further states the diverse applications of materials for degrading organic pollutants and airborne pathogens, improving indoor air quality and as a potential antimicrobial agent. The application of photocatalysts in green organic synthesis, biomedical field and in hydrogen evolution are also presented in the book. It covers theoretical studies of photocatalytic material and conversion of CO2 to value added chemical feed stocks. The book is of relevance to researchers in academia and industry alike in the fields of material science, environmental science & technology, photocatalytic applications and in energy generation and conversion.


Photocatalysts and Electrocatalysts in Water Remediation

Photocatalysts and Electrocatalysts in Water Remediation

Author: Prasenjit Bhunia

Publisher: John Wiley & Sons

Published: 2022-12-09

Total Pages: 340

ISBN-13: 1119855330

DOWNLOAD EBOOK

Photocatalysts and Electrocatalysts in Water Remediation Comprehensive resource describing the fundamentals, synthesis, and commercial applications of photocatalysts and electrocatalysts in water decontamination Photocatalysts and Electrocatalysts in Water Remediation introduces the fundamentals of both photo- and electro-catalysts and highlights the potentials of photo- and electro-catalysis towards water decontamination, covering strategies to improve photo- and electro-catalytic efficacies, functions of photo- and electro-catalysts and involved chemical reactions, and challenges and recent developments in the field, with additional discussion of both lab-scale and commercial-scale materials and processes. As a forward-thinking resource, the text also discusses the scope of further research on photo-, electro- and electrophoto-catalysts. Edited by three highly qualified professionals, with significant experience in the field, the text is further enriched with critically analyzed and expertly opined contributions from several well-known researchers around the world. In Photocatalysts and Electrocatalysts in Water Remediation, readers can expect to find information on: Fundamentals and functional mechanisms of photocatalysis in water treatment, and different synthetic routes and band gap engineering of photocatalysts Photocatalytic decontamination of organic pollutants from water and photocatalytic removal of heavy metal ions from water Smart photocatalysts in water remediation Fundamentals and functional mechanisms of electrocatalysis in water treatment Electrocatalytic degradation of organic pollutants and removal of heavy metal ions from water Different synthetic routes of electrocatalysts and fabrication of electrodes and combined electro-photocatalytic techniques in water remediation Photocatalysts and Electrocatalysts in Water Remediation serves as one of the most comprehensive and authoritative resources that has ever been published in this field and is a thoroughly complete source of information on the subject for researchers across a myriad of disciplines along with water industry professionals.


Book Synopsis Photocatalysts and Electrocatalysts in Water Remediation by : Prasenjit Bhunia

Download or read book Photocatalysts and Electrocatalysts in Water Remediation written by Prasenjit Bhunia and published by John Wiley & Sons. This book was released on 2022-12-09 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photocatalysts and Electrocatalysts in Water Remediation Comprehensive resource describing the fundamentals, synthesis, and commercial applications of photocatalysts and electrocatalysts in water decontamination Photocatalysts and Electrocatalysts in Water Remediation introduces the fundamentals of both photo- and electro-catalysts and highlights the potentials of photo- and electro-catalysis towards water decontamination, covering strategies to improve photo- and electro-catalytic efficacies, functions of photo- and electro-catalysts and involved chemical reactions, and challenges and recent developments in the field, with additional discussion of both lab-scale and commercial-scale materials and processes. As a forward-thinking resource, the text also discusses the scope of further research on photo-, electro- and electrophoto-catalysts. Edited by three highly qualified professionals, with significant experience in the field, the text is further enriched with critically analyzed and expertly opined contributions from several well-known researchers around the world. In Photocatalysts and Electrocatalysts in Water Remediation, readers can expect to find information on: Fundamentals and functional mechanisms of photocatalysis in water treatment, and different synthetic routes and band gap engineering of photocatalysts Photocatalytic decontamination of organic pollutants from water and photocatalytic removal of heavy metal ions from water Smart photocatalysts in water remediation Fundamentals and functional mechanisms of electrocatalysis in water treatment Electrocatalytic degradation of organic pollutants and removal of heavy metal ions from water Different synthetic routes of electrocatalysts and fabrication of electrodes and combined electro-photocatalytic techniques in water remediation Photocatalysts and Electrocatalysts in Water Remediation serves as one of the most comprehensive and authoritative resources that has ever been published in this field and is a thoroughly complete source of information on the subject for researchers across a myriad of disciplines along with water industry professionals.


Photocatalytic Conversion of Methane and Reduction of CO2 with H2O

Photocatalytic Conversion of Methane and Reduction of CO2 with H2O

Author: Xiang Yu

Publisher:

Published: 2019

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Photocatalysis is one of the key technologies for clean energy and environmental applications. The number of applications based on photocatalysis has increased dramatically for the past two decades. Photocatalytic activation of C-H bonds is an emerging field. Methane is a promising source of energy with a huge reserve and is considered to be one of the alternatives to non-renewable petroleum resources because it can be converted to valuable hydrocarbon feedstocks and hydrogen through appropriate reactions. However, due to its high stability, high energy is usually consumed for its conversion, which remains a problem to be solved. Methane conversion and reaction mechanism occurring on metal-heteropolyacid-titania nanocomposites were investigated in Chapters 3 and 4. Oxidation of methane has been carried out for more than a century. Since oxygen is a very reactive molecule, methane can react very rapidly with molecular oxygen and is prone to total oxidation till CO2. Therefore, it is difficult to obtain a desired product with high yield and high selectivity. We report here direct and selective photocatalytic highly-selective oxidation of methane to carbon monoxide under ambient conditions. The composite catalysts on the basis of zinc, tungstophosphoric acid and titania exhibit exceptional performance in this reaction, high carbon monoxide selectivity and quantum efficiency of 7.1% at 362 nm. The reaction is consistent with the Mars-Van Krevelen type sequence and involves formation of the surface methoxy-carbonates as intermediates and zinc oxidation-reduction cycling. In the past few decades, extensive research has focused on the direct conversion of methane to alcohols or higher hydrocarbons. The current processes of converting methane to alcohols or olefins are complex and expensive, because they require an intermediate step of reforming methane to syngas. Although the direct conversion of methane to more valuable products has significant environmental and potential commercial value, there is no commercial scale process available. We uncovered highly selective (>90%) quantitative photochemical direct conversion of methane to ethane at ambient temperature over silver-heteropolyacid-titania nanocomposites. The ethane yield from methane reaches 9 % on the optimized materials. High quantum efficiency, high selectivity and significant yield of ethane combined with excellent stability are major advantages of methane quantitative synthesis from methane using the photochemical looping approach. The rise in atmospheric carbon dioxide and the depletion of fossil fuel reserves have raised serious concerns about the subsequent impact of CO2 on the global climate and future energy supply. The use of abundant solar energy to convert carbon dioxide into fuel, such as carbon monoxide, methane or methanol, solves both problems simultaneously and provides a convenient method of energy storage. Chapter 5 addresses a new efficient catalyst for selective CO2 to CO conversion. The zinc containing phosphotungstic acid-titania nanocomposites exhibited exceptional high activity reaching 50 μmol CO/g·h and selectivity (73%) in the CO2 photocatalytic reduction to CO in the presence of water. The in-situ IR experiments suggest that reaction involves zinc bicarbonates containing hydroxyl groups. The decomposition of these zinc bicarbonate species under irradiation leads to the selective production of carbon monoxide and oxygen. In photocatalytic reactions, the difference in catalyst morphology usually has a significant effect on the photocatalytic performance. Chapter 6 studied the effect of monoclinic bismuth vanadate (BiVO4) crystals with controlled ratio of {010} and {110} facets for photocatalytic reduction of CO2 by H2O. The reaction under irradiation is significantly enhanced by selective photo-deposition of Cu and Co co-catalysts over different facets providing Z-scheme charge flow.


Book Synopsis Photocatalytic Conversion of Methane and Reduction of CO2 with H2O by : Xiang Yu

Download or read book Photocatalytic Conversion of Methane and Reduction of CO2 with H2O written by Xiang Yu and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photocatalysis is one of the key technologies for clean energy and environmental applications. The number of applications based on photocatalysis has increased dramatically for the past two decades. Photocatalytic activation of C-H bonds is an emerging field. Methane is a promising source of energy with a huge reserve and is considered to be one of the alternatives to non-renewable petroleum resources because it can be converted to valuable hydrocarbon feedstocks and hydrogen through appropriate reactions. However, due to its high stability, high energy is usually consumed for its conversion, which remains a problem to be solved. Methane conversion and reaction mechanism occurring on metal-heteropolyacid-titania nanocomposites were investigated in Chapters 3 and 4. Oxidation of methane has been carried out for more than a century. Since oxygen is a very reactive molecule, methane can react very rapidly with molecular oxygen and is prone to total oxidation till CO2. Therefore, it is difficult to obtain a desired product with high yield and high selectivity. We report here direct and selective photocatalytic highly-selective oxidation of methane to carbon monoxide under ambient conditions. The composite catalysts on the basis of zinc, tungstophosphoric acid and titania exhibit exceptional performance in this reaction, high carbon monoxide selectivity and quantum efficiency of 7.1% at 362 nm. The reaction is consistent with the Mars-Van Krevelen type sequence and involves formation of the surface methoxy-carbonates as intermediates and zinc oxidation-reduction cycling. In the past few decades, extensive research has focused on the direct conversion of methane to alcohols or higher hydrocarbons. The current processes of converting methane to alcohols or olefins are complex and expensive, because they require an intermediate step of reforming methane to syngas. Although the direct conversion of methane to more valuable products has significant environmental and potential commercial value, there is no commercial scale process available. We uncovered highly selective (>90%) quantitative photochemical direct conversion of methane to ethane at ambient temperature over silver-heteropolyacid-titania nanocomposites. The ethane yield from methane reaches 9 % on the optimized materials. High quantum efficiency, high selectivity and significant yield of ethane combined with excellent stability are major advantages of methane quantitative synthesis from methane using the photochemical looping approach. The rise in atmospheric carbon dioxide and the depletion of fossil fuel reserves have raised serious concerns about the subsequent impact of CO2 on the global climate and future energy supply. The use of abundant solar energy to convert carbon dioxide into fuel, such as carbon monoxide, methane or methanol, solves both problems simultaneously and provides a convenient method of energy storage. Chapter 5 addresses a new efficient catalyst for selective CO2 to CO conversion. The zinc containing phosphotungstic acid-titania nanocomposites exhibited exceptional high activity reaching 50 μmol CO/g·h and selectivity (73%) in the CO2 photocatalytic reduction to CO in the presence of water. The in-situ IR experiments suggest that reaction involves zinc bicarbonates containing hydroxyl groups. The decomposition of these zinc bicarbonate species under irradiation leads to the selective production of carbon monoxide and oxygen. In photocatalytic reactions, the difference in catalyst morphology usually has a significant effect on the photocatalytic performance. Chapter 6 studied the effect of monoclinic bismuth vanadate (BiVO4) crystals with controlled ratio of {010} and {110} facets for photocatalytic reduction of CO2 by H2O. The reaction under irradiation is significantly enhanced by selective photo-deposition of Cu and Co co-catalysts over different facets providing Z-scheme charge flow.


Exploring New Catalysts for Photocatalytic Carbon Dioxide Reduction Using Homogeneous Transition Metal Complexes

Exploring New Catalysts for Photocatalytic Carbon Dioxide Reduction Using Homogeneous Transition Metal Complexes

Author: Yasmeen Hameed

Publisher:

Published: 2019

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The increase of the carbon dioxide concentration in the atmosphere provides a strong impetus to discover new catalysts that are able to reduce CO2. The reduction processes of this greenhouse gas CO2 have recently received enormous efforts in the research area. The objective of this thesis was the photocatalytic reduction of CO2 that is known as an artificial photosynthesis using visible light, and the objective of the thesis was to study the ability and efficiency of different new molecular catalysts towards CO2 reduction. The goals of the thesis are to design and characterize new catalysts that have high efficiency for the catalytic reduction of CO2. After a brief introduction in Chapter 1 about the photocatalytic reduction of CO2, a different catalyst is presented in each chapter with their characterization and examination for the photocatalytic reduction of CO2. In addition, these presented catalysts were also examined for the electrocatalytic reduction of CO2, but they show a good catalytic behavior in the photocatalytic reduction of CO2. The catalytic mechanisms were also suggested for each catalyst and tried to be confirmed by many different experiments. observed to be highly influenced by CO2 concentration. These newly discovered catalysts are based on transition metal complexes that are able to be good catalysts for the photocatalytic CO2 reduction. These new transition metal complexes have been synthesized, characterized and examined for their catalytic reactivity for CO2 reduction. As presented in Chapter 2, new manganese and rhenium ccomplexes bearing a phosphino-amino-pyridine ligand were synthesized, characterized and showed their photocatalytic ability for CO2 reduction. In addition, Chapter 3 presents new Ru catalysts supported by an unprecedented ligand array and documented their photocatalytic ability towards CO2 reduction. Moreover, Chapter 4 focuses on new Zn(II) complexes that are novel catalysts in the photocatalytic CO2 reduction area. Furthermore, Chapter 5 presents a new environment for Re photocatalyst that has the switch in product to formic acid compare to all other reported Re photocatalysts. On the other hand, Chapter 6 shows new dimers and monomers for a series of earth-abundant transition metal dibromide complexes supported by a neutral SNS ligand framework and reveals their applications in the catalysis. Finally, Chapter 7 presents a brief conclusion and a number of future directions. The attempts to explore and discover the new catalysts for CO2 reduction were exciting, successfully and resulted in the discovery of new catalysts. These catalysts show their good ability to reduce carbon dioxide (CO2) to more valuable products such as carbon monoxide (CO) and formic acid (HCOOH).


Book Synopsis Exploring New Catalysts for Photocatalytic Carbon Dioxide Reduction Using Homogeneous Transition Metal Complexes by : Yasmeen Hameed

Download or read book Exploring New Catalysts for Photocatalytic Carbon Dioxide Reduction Using Homogeneous Transition Metal Complexes written by Yasmeen Hameed and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The increase of the carbon dioxide concentration in the atmosphere provides a strong impetus to discover new catalysts that are able to reduce CO2. The reduction processes of this greenhouse gas CO2 have recently received enormous efforts in the research area. The objective of this thesis was the photocatalytic reduction of CO2 that is known as an artificial photosynthesis using visible light, and the objective of the thesis was to study the ability and efficiency of different new molecular catalysts towards CO2 reduction. The goals of the thesis are to design and characterize new catalysts that have high efficiency for the catalytic reduction of CO2. After a brief introduction in Chapter 1 about the photocatalytic reduction of CO2, a different catalyst is presented in each chapter with their characterization and examination for the photocatalytic reduction of CO2. In addition, these presented catalysts were also examined for the electrocatalytic reduction of CO2, but they show a good catalytic behavior in the photocatalytic reduction of CO2. The catalytic mechanisms were also suggested for each catalyst and tried to be confirmed by many different experiments. observed to be highly influenced by CO2 concentration. These newly discovered catalysts are based on transition metal complexes that are able to be good catalysts for the photocatalytic CO2 reduction. These new transition metal complexes have been synthesized, characterized and examined for their catalytic reactivity for CO2 reduction. As presented in Chapter 2, new manganese and rhenium ccomplexes bearing a phosphino-amino-pyridine ligand were synthesized, characterized and showed their photocatalytic ability for CO2 reduction. In addition, Chapter 3 presents new Ru catalysts supported by an unprecedented ligand array and documented their photocatalytic ability towards CO2 reduction. Moreover, Chapter 4 focuses on new Zn(II) complexes that are novel catalysts in the photocatalytic CO2 reduction area. Furthermore, Chapter 5 presents a new environment for Re photocatalyst that has the switch in product to formic acid compare to all other reported Re photocatalysts. On the other hand, Chapter 6 shows new dimers and monomers for a series of earth-abundant transition metal dibromide complexes supported by a neutral SNS ligand framework and reveals their applications in the catalysis. Finally, Chapter 7 presents a brief conclusion and a number of future directions. The attempts to explore and discover the new catalysts for CO2 reduction were exciting, successfully and resulted in the discovery of new catalysts. These catalysts show their good ability to reduce carbon dioxide (CO2) to more valuable products such as carbon monoxide (CO) and formic acid (HCOOH).