Classical Nucleation Theory in Multicomponent Systems

Classical Nucleation Theory in Multicomponent Systems

Author: Hanna Vehkamäki

Publisher: Springer Science & Business Media

Published: 2006-03-22

Total Pages: 189

ISBN-13: 3540312188

DOWNLOAD EBOOK

Nucleation is the initial step of every first-order phase transition, and most phase transitions encountered both in everyday life and industrial processes are of the first-order. Using an elegant classical theory based on thermodynamics and kinetics, this book provides a fully detailed picture of multi-component nucleation. As many of the issues concerning multi-component nucleation theory have been solved during the last 10-15 years, it also thoroughly integrates both fundamental theory with recent advances presented in the literature. Classical Nucleation Theory in Multicomponent Systems serves as a textbook for advanced thermodynamics courses, as well as an important reference for researchers in the field. The main topics covered are: the basic relevant thermodynamics and statistical physics; modelling a molecular cluster as a spherical liquid droplet; predicting the size and composition of the nucleating critical clusters; kinetic models for cluster growth and decay; calculating nucleation rates; and a full derivation and application of nucleation theorems that can be used to extract microscopic cluster properties from nucleation rate measurements. The assumptions and approximations needed to build the classical theory are described in detail, and the reasons why the theory fails in certain cases are explained. Relevant problems are presented at the end of each chapter.


Book Synopsis Classical Nucleation Theory in Multicomponent Systems by : Hanna Vehkamäki

Download or read book Classical Nucleation Theory in Multicomponent Systems written by Hanna Vehkamäki and published by Springer Science & Business Media. This book was released on 2006-03-22 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nucleation is the initial step of every first-order phase transition, and most phase transitions encountered both in everyday life and industrial processes are of the first-order. Using an elegant classical theory based on thermodynamics and kinetics, this book provides a fully detailed picture of multi-component nucleation. As many of the issues concerning multi-component nucleation theory have been solved during the last 10-15 years, it also thoroughly integrates both fundamental theory with recent advances presented in the literature. Classical Nucleation Theory in Multicomponent Systems serves as a textbook for advanced thermodynamics courses, as well as an important reference for researchers in the field. The main topics covered are: the basic relevant thermodynamics and statistical physics; modelling a molecular cluster as a spherical liquid droplet; predicting the size and composition of the nucleating critical clusters; kinetic models for cluster growth and decay; calculating nucleation rates; and a full derivation and application of nucleation theorems that can be used to extract microscopic cluster properties from nucleation rate measurements. The assumptions and approximations needed to build the classical theory are described in detail, and the reasons why the theory fails in certain cases are explained. Relevant problems are presented at the end of each chapter.


Classical Nucleation Theory in Multicomponent Systems

Classical Nucleation Theory in Multicomponent Systems

Author: Hanna Vehkamäki

Publisher: Springer Science & Business Media

Published: 2006-01-12

Total Pages: 189

ISBN-13: 3540292136

DOWNLOAD EBOOK

Nucleation is the initial step of every first-order phase transition, and most phase transitions encountered both in everyday life and industrial processes are of the first-order. Using an elegant classical theory based on thermodynamics and kinetics, this book provides a fully detailed picture of multi-component nucleation. As many of the issues concerning multi-component nucleation theory have been solved during the last 10-15 years, it also thoroughly integrates both fundamental theory with recent advances presented in the literature. Classical Nucleation Theory in Multicomponent Systems serves as a textbook for advanced thermodynamics courses, as well as an important reference for researchers in the field. The main topics covered are: the basic relevant thermodynamics and statistical physics; modelling a molecular cluster as a spherical liquid droplet; predicting the size and composition of the nucleating critical clusters; kinetic models for cluster growth and decay; calculating nucleation rates; and a full derivation and application of nucleation theorems that can be used to extract microscopic cluster properties from nucleation rate measurements. The assumptions and approximations needed to build the classical theory are described in detail, and the reasons why the theory fails in certain cases are explained. Relevant problems are presented at the end of each chapter.


Book Synopsis Classical Nucleation Theory in Multicomponent Systems by : Hanna Vehkamäki

Download or read book Classical Nucleation Theory in Multicomponent Systems written by Hanna Vehkamäki and published by Springer Science & Business Media. This book was released on 2006-01-12 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nucleation is the initial step of every first-order phase transition, and most phase transitions encountered both in everyday life and industrial processes are of the first-order. Using an elegant classical theory based on thermodynamics and kinetics, this book provides a fully detailed picture of multi-component nucleation. As many of the issues concerning multi-component nucleation theory have been solved during the last 10-15 years, it also thoroughly integrates both fundamental theory with recent advances presented in the literature. Classical Nucleation Theory in Multicomponent Systems serves as a textbook for advanced thermodynamics courses, as well as an important reference for researchers in the field. The main topics covered are: the basic relevant thermodynamics and statistical physics; modelling a molecular cluster as a spherical liquid droplet; predicting the size and composition of the nucleating critical clusters; kinetic models for cluster growth and decay; calculating nucleation rates; and a full derivation and application of nucleation theorems that can be used to extract microscopic cluster properties from nucleation rate measurements. The assumptions and approximations needed to build the classical theory are described in detail, and the reasons why the theory fails in certain cases are explained. Relevant problems are presented at the end of each chapter.


The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation

The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation

Author: Seunghwa Ryu

Publisher: Stanford University

Published: 2011

Total Pages: 240

ISBN-13:

DOWNLOAD EBOOK

Nucleation has been the subject of intense research because it plays an important role in the dynamics of most first-order phase transitions. The standard theory to describe the nucleation phenomena is the classical nucleation theory (CNT) because it correctly captures the qualitative features of the nucleation process. However potential problems with CNT have been suggested by previous studies. We systematically test the individual components of CNT by computer simulations of the Ising model and find that it accurately predicts the nucleation rate if the correct droplet free energy computed by umbrella sampling is provided as input. This validates the fundamental assumption of CNT that the system can be coarse grained into a one dimensional Markov chain with the largest droplet size as the reaction coordinate. Employing similar simulation techniques, we study the dislocation nucleation which is essential to our understanding of plastic deformation, ductility, and mechanical strength of crystalline materials. We show that dislocation nucleation rates can be accurately predicted over a wide range of conditions using CNT with the activation free energy determined by umbrella sampling. Our data reveal very large activation entropies, which contribute a multiplicative factor of many orders of magnitude to the nucleation rate. The activation entropy at constant strain is caused by thermal expansion, with negligible contribution from the vibrational entropy. The activation entropy at constant stress is significantly larger than that at constant strain, as a result of thermal softening. The large activation entropies are caused by anharmonic effects, showing the limitations of the harmonic approximation widely used for rate estimation in solids. Similar behaviors are expected to occur in other nucleation processes in solids.


Book Synopsis The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation by : Seunghwa Ryu

Download or read book The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation written by Seunghwa Ryu and published by Stanford University. This book was released on 2011 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nucleation has been the subject of intense research because it plays an important role in the dynamics of most first-order phase transitions. The standard theory to describe the nucleation phenomena is the classical nucleation theory (CNT) because it correctly captures the qualitative features of the nucleation process. However potential problems with CNT have been suggested by previous studies. We systematically test the individual components of CNT by computer simulations of the Ising model and find that it accurately predicts the nucleation rate if the correct droplet free energy computed by umbrella sampling is provided as input. This validates the fundamental assumption of CNT that the system can be coarse grained into a one dimensional Markov chain with the largest droplet size as the reaction coordinate. Employing similar simulation techniques, we study the dislocation nucleation which is essential to our understanding of plastic deformation, ductility, and mechanical strength of crystalline materials. We show that dislocation nucleation rates can be accurately predicted over a wide range of conditions using CNT with the activation free energy determined by umbrella sampling. Our data reveal very large activation entropies, which contribute a multiplicative factor of many orders of magnitude to the nucleation rate. The activation entropy at constant strain is caused by thermal expansion, with negligible contribution from the vibrational entropy. The activation entropy at constant stress is significantly larger than that at constant strain, as a result of thermal softening. The large activation entropies are caused by anharmonic effects, showing the limitations of the harmonic approximation widely used for rate estimation in solids. Similar behaviors are expected to occur in other nucleation processes in solids.


Nucleation Theory

Nucleation Theory

Author:

Publisher: Springer

Published: 2012-11-26

Total Pages: 334

ISBN-13: 9789048136483

DOWNLOAD EBOOK


Book Synopsis Nucleation Theory by :

Download or read book Nucleation Theory written by and published by Springer. This book was released on 2012-11-26 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Nucleation Theory

Nucleation Theory

Author: V.I. Kalikmanov

Publisher: Springer

Published: 2012-11-28

Total Pages: 319

ISBN-13: 9048136431

DOWNLOAD EBOOK

One of the most striking phenomena in condensed matter physics is the occurrence of abrupt transitions in the structure of a substance at certain temperatures or pressures. These are first order phase transitions, and examples such as the freezing of water are familiar in everyday life. The conditions at which the transformation takes place can sometimes vary. For example, the freezing point of water is not always 0°C, but the liquid can be supercooled considerably if it is pure enough and treated carefully. The reason for this phenomenon is nucleation. This monograph covers all major available routes of theoretical research of nucleation phenomena (phenomenological models, semi-phenomenological theories, density functional theories, microscopic and semi-microscopic approaches), with emphasis on the formation of liquid droplets from a metastable vapor. Also, it illustrates the application of these various approaches to experimentally relevant problems. In spite of the familiarity of the involved phenomena, it is still impossible to calculate nucleation accurately, as the properties and the kinetics of the daughter phase are insufficiently well known. Existing theories based upon classical nucleation theory have on the whole explained the trends in behavior correctly. However they often fail spectacularly to account for new data, in particular in the case of binary or, more generally, multi-component nucleation. The current challenge of this book is to go beyond such classical models and provide a more satisfactory theory by using density functional theory and microscopic computer simulations in order to describe the properties of small clusters. Also, semi-phenomenological models are proposed, which attempt to relate the properties of small clusters to known properties of the bulk phases. This monograph is an introduction as well as a compendium to researchers in soft condensed matter physics and chemical physics, graduate and post-graduate students in physics and chemistry starting on research in the area of nucleation, and to experimentalists wishing to gain a better understanding of the efforts being made to account for their data.


Book Synopsis Nucleation Theory by : V.I. Kalikmanov

Download or read book Nucleation Theory written by V.I. Kalikmanov and published by Springer. This book was released on 2012-11-28 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most striking phenomena in condensed matter physics is the occurrence of abrupt transitions in the structure of a substance at certain temperatures or pressures. These are first order phase transitions, and examples such as the freezing of water are familiar in everyday life. The conditions at which the transformation takes place can sometimes vary. For example, the freezing point of water is not always 0°C, but the liquid can be supercooled considerably if it is pure enough and treated carefully. The reason for this phenomenon is nucleation. This monograph covers all major available routes of theoretical research of nucleation phenomena (phenomenological models, semi-phenomenological theories, density functional theories, microscopic and semi-microscopic approaches), with emphasis on the formation of liquid droplets from a metastable vapor. Also, it illustrates the application of these various approaches to experimentally relevant problems. In spite of the familiarity of the involved phenomena, it is still impossible to calculate nucleation accurately, as the properties and the kinetics of the daughter phase are insufficiently well known. Existing theories based upon classical nucleation theory have on the whole explained the trends in behavior correctly. However they often fail spectacularly to account for new data, in particular in the case of binary or, more generally, multi-component nucleation. The current challenge of this book is to go beyond such classical models and provide a more satisfactory theory by using density functional theory and microscopic computer simulations in order to describe the properties of small clusters. Also, semi-phenomenological models are proposed, which attempt to relate the properties of small clusters to known properties of the bulk phases. This monograph is an introduction as well as a compendium to researchers in soft condensed matter physics and chemical physics, graduate and post-graduate students in physics and chemistry starting on research in the area of nucleation, and to experimentalists wishing to gain a better understanding of the efforts being made to account for their data.


Nucleation in Condensed Matter

Nucleation in Condensed Matter

Author: Ken Kelton

Publisher: Elsevier

Published: 2010-03-19

Total Pages: 759

ISBN-13: 0080912648

DOWNLOAD EBOOK

In Nucleation in Condensed Matter, key theoretical models for nucleation are developed and experimental data are used to discuss their range of validity. A central aim of this book is to enable the reader, when faced with a phenomenon in which nucleation appears to play a role, to determine whether nucleation is indeed important and to develop a quantitative and predictive description of the nucleation behavior. The third section of the book examines nucleation processes in practical situations, ranging from solid state precipitation to nucleation in biological systems to nucleation in food and drink. Nucleation in Condensed Matter is a key reference for an advanced materials course in phase transformations. It is also an essential reference for researchers in the field. Unified treatment of key theories, experimental evaluations and case studies Complete derivation of key models Detailed discussion of experimental measurements Examples of nucleation in diverse systems


Book Synopsis Nucleation in Condensed Matter by : Ken Kelton

Download or read book Nucleation in Condensed Matter written by Ken Kelton and published by Elsevier. This book was released on 2010-03-19 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Nucleation in Condensed Matter, key theoretical models for nucleation are developed and experimental data are used to discuss their range of validity. A central aim of this book is to enable the reader, when faced with a phenomenon in which nucleation appears to play a role, to determine whether nucleation is indeed important and to develop a quantitative and predictive description of the nucleation behavior. The third section of the book examines nucleation processes in practical situations, ranging from solid state precipitation to nucleation in biological systems to nucleation in food and drink. Nucleation in Condensed Matter is a key reference for an advanced materials course in phase transformations. It is also an essential reference for researchers in the field. Unified treatment of key theories, experimental evaluations and case studies Complete derivation of key models Detailed discussion of experimental measurements Examples of nucleation in diverse systems


Homogeneous Nucleation Theory

Homogeneous Nucleation Theory

Author: Farid Abraham

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 278

ISBN-13: 0323158048

DOWNLOAD EBOOK

Homogeneous Nucleation Theory: The Pretransition Theory of Vapor Condensation discusses the influence of classical thermodynamics, statistical mechanics, and multistate kinetics on the homogeneous nucleation theory. This book is organized into 10 chapters and begins with a simple model calculation that yields an important insight into the major physical features governing supersaturated vapor condensation. The following chapters explore the development of the theory of equilibrium thermodynamics pertinent to the study of a nucleation phenomena and a postulatory formulation of statistical mechanics and its relation to the calculation of the thermodynamic potentials. The discussion then shifts to a statistical thermodynamics description of an imperfect gas assuming the droplet model of Band-Bijl-Frenkel and to the development of the multistate kinetics of cluster formation. The book also explores the development of the classical Einstein theory for crystalline solids and generalizes this theory for its applications to planar surfaces of microcrystalline clusters. It also presents a comparison of the exact free energies for the microcrystallites with the predictions of the droplet model using the capillarity approximation. Three distinct approaches for calculating the thermodynamic properties of physical clusters are covered in the concluding chapters.


Book Synopsis Homogeneous Nucleation Theory by : Farid Abraham

Download or read book Homogeneous Nucleation Theory written by Farid Abraham and published by Elsevier. This book was released on 2012-12-02 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous Nucleation Theory: The Pretransition Theory of Vapor Condensation discusses the influence of classical thermodynamics, statistical mechanics, and multistate kinetics on the homogeneous nucleation theory. This book is organized into 10 chapters and begins with a simple model calculation that yields an important insight into the major physical features governing supersaturated vapor condensation. The following chapters explore the development of the theory of equilibrium thermodynamics pertinent to the study of a nucleation phenomena and a postulatory formulation of statistical mechanics and its relation to the calculation of the thermodynamic potentials. The discussion then shifts to a statistical thermodynamics description of an imperfect gas assuming the droplet model of Band-Bijl-Frenkel and to the development of the multistate kinetics of cluster formation. The book also explores the development of the classical Einstein theory for crystalline solids and generalizes this theory for its applications to planar surfaces of microcrystalline clusters. It also presents a comparison of the exact free energies for the microcrystallites with the predictions of the droplet model using the capillarity approximation. Three distinct approaches for calculating the thermodynamic properties of physical clusters are covered in the concluding chapters.


Kinetic Theory of Nucleation

Kinetic Theory of Nucleation

Author: Eli Ruckenstein

Publisher: CRC Press

Published: 2016-07-06

Total Pages: 541

ISBN-13: 1138032174

DOWNLOAD EBOOK

Explore a Kinetic Approach to the Description of Nucleation - An Alternative to the Classical Nucleation TheoryKinetic Theory of Nucleation presents an alternative to the classical theory of nucleation in gases and liquids-the kinetic nucleation theory of Ruckenstein-Narsimhan-Nowakowski (RNNT). RNNT uses the kinetic theory of fluids to calculate t


Book Synopsis Kinetic Theory of Nucleation by : Eli Ruckenstein

Download or read book Kinetic Theory of Nucleation written by Eli Ruckenstein and published by CRC Press. This book was released on 2016-07-06 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore a Kinetic Approach to the Description of Nucleation - An Alternative to the Classical Nucleation TheoryKinetic Theory of Nucleation presents an alternative to the classical theory of nucleation in gases and liquids-the kinetic nucleation theory of Ruckenstein-Narsimhan-Nowakowski (RNNT). RNNT uses the kinetic theory of fluids to calculate t


Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151

Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151

Author: Gregoire Nicolis

Publisher: John Wiley & Sons

Published: 2012-05-22

Total Pages: 352

ISBN-13: 111816783X

DOWNLOAD EBOOK

The Advances in Chemical Physics series—the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Kinetics and thermodynamics of fluctuation-induced transitions in multistable systems (G. Nicolis and C. Nicolis) Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems (Titus S. van Erp) Confocal depolarized dynamic light scattering (M. Potenza, T. Sanvito, V. Degiorgio, and M. Giglio) The two-step mechanism and the solution-crystal spinodal for nucleation of crystals in solution (Peter G. Vekilov) Experimental studies of two-step nucleation during two-dimensional crystallization of colloidal particles with short-range attraction (John R. Savage, Liquan Pei, and Anthony D. Dinsmore) On the role of metastable intermediate states in the homogeneous nucleation of solids from solution (James F. Lutsko) Effects of protein size on the high-concentration/low-concentration phase transition (Patrick Grosfils) Geometric constraints in the self-assembly of mineral dendrites and platelets (John J. Kozak) What can mesoscopic level in situ observations teach us about kinetics and thermodynamics of protein crystallization? (Mike Sleutel, Dominique Maes, and Alexander Van Driessche) The ability of silica to induce biomimetic crystallization of calcium carbonate (Matthias Kellermeier, Emilio Melero-GarcÍa, Werner Kunz, and Juan Manuel GarcÍa-Ruiz)


Book Synopsis Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151 by : Gregoire Nicolis

Download or read book Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151 written by Gregoire Nicolis and published by John Wiley & Sons. This book was released on 2012-05-22 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advances in Chemical Physics series—the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Kinetics and thermodynamics of fluctuation-induced transitions in multistable systems (G. Nicolis and C. Nicolis) Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems (Titus S. van Erp) Confocal depolarized dynamic light scattering (M. Potenza, T. Sanvito, V. Degiorgio, and M. Giglio) The two-step mechanism and the solution-crystal spinodal for nucleation of crystals in solution (Peter G. Vekilov) Experimental studies of two-step nucleation during two-dimensional crystallization of colloidal particles with short-range attraction (John R. Savage, Liquan Pei, and Anthony D. Dinsmore) On the role of metastable intermediate states in the homogeneous nucleation of solids from solution (James F. Lutsko) Effects of protein size on the high-concentration/low-concentration phase transition (Patrick Grosfils) Geometric constraints in the self-assembly of mineral dendrites and platelets (John J. Kozak) What can mesoscopic level in situ observations teach us about kinetics and thermodynamics of protein crystallization? (Mike Sleutel, Dominique Maes, and Alexander Van Driessche) The ability of silica to induce biomimetic crystallization of calcium carbonate (Matthias Kellermeier, Emilio Melero-GarcÍa, Werner Kunz, and Juan Manuel GarcÍa-Ruiz)


Classical Nucleation Theory in the Phase Field Crystal Model

Classical Nucleation Theory in the Phase Field Crystal Model

Author: Paul Jreidini

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

"An understanding of polycrystalline materials, ranging from alloys to certain ceramics and polymers and beyond, is of great importance for modern society. These materials typically form through the process of nucleation, a thermally activated phase transition. The numerical modeling of this phase transition is problematic for traditional numerical techniques: the commonly used phase field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as Molecular Dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. As such, there is interest in examining whether the Phase Field Crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes, is capable of modeling nucleation. In this work, we numerically calculate nucleation rates and incubation times in the PFC model. We show qualitative agreement with classical nucleation theory (CNT), a single-variable stochastic model. Notably, we show that nucleation rates in the PFC model are time-dependent. We also examine the form and behavior of nuclei at early formation times, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PF Cmodel would require extending CNT to a multi-variable theory." --


Book Synopsis Classical Nucleation Theory in the Phase Field Crystal Model by : Paul Jreidini

Download or read book Classical Nucleation Theory in the Phase Field Crystal Model written by Paul Jreidini and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "An understanding of polycrystalline materials, ranging from alloys to certain ceramics and polymers and beyond, is of great importance for modern society. These materials typically form through the process of nucleation, a thermally activated phase transition. The numerical modeling of this phase transition is problematic for traditional numerical techniques: the commonly used phase field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as Molecular Dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. As such, there is interest in examining whether the Phase Field Crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes, is capable of modeling nucleation. In this work, we numerically calculate nucleation rates and incubation times in the PFC model. We show qualitative agreement with classical nucleation theory (CNT), a single-variable stochastic model. Notably, we show that nucleation rates in the PFC model are time-dependent. We also examine the form and behavior of nuclei at early formation times, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PF Cmodel would require extending CNT to a multi-variable theory." --