Compendium of Sanitation Systems and Technologies

Compendium of Sanitation Systems and Technologies

Author: Elizabeth Tilley

Publisher:

Published: 2014

Total Pages: 176

ISBN-13: 9783906484570

DOWNLOAD EBOOK


Book Synopsis Compendium of Sanitation Systems and Technologies by : Elizabeth Tilley

Download or read book Compendium of Sanitation Systems and Technologies written by Elizabeth Tilley and published by . This book was released on 2014 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Faecal Sludge Management

Faecal Sludge Management

Author: Linda Strande

Publisher: IWA Publishing

Published: 2014-08-15

Total Pages: 428

ISBN-13: 1780404735

DOWNLOAD EBOOK

It is estimated that literally billions of residents in urban and peri-urban areas of Africa, Asia, and Latin America are served by onsite sanitation systems (e.g. various types of latrines and septic tanks). Until recently, the management of faecal sludge from these onsite systems has been grossly neglected, partially as a result of them being considered temporary solutions until sewer-based systems could be implemented. However, the perception of onsite or decentralized sanitation technologies for urban areas is gradually changing, and is increasingly being considered as long-term, sustainable options in urban areas, especially in low- and middle-income countries that lack sewer infrastructures. This is the first book dedicated to faecal sludge management. It compiles the current state of knowledge of the rapidly evolving field of faecal sludge management, and presents an integrated approach that includes technology, management, and planning based on Sandecs 20 years of experience in the field. Faecal Sludge Management: Systems Approach for Implementation and Operation addresses the organization of the entire faecal sludge management service chain, from the collection and transport of sludge, and the current state of knowledge of treatment options, to the final end use or disposal of treated sludge. The book also presents important factors to consider when evaluating and upscaling new treatment technology options. The book is designed for undergraduate and graduate students, and engineers and practitioners in the field who have some basic knowledge of environmental and/or wastewater engineering.


Book Synopsis Faecal Sludge Management by : Linda Strande

Download or read book Faecal Sludge Management written by Linda Strande and published by IWA Publishing. This book was released on 2014-08-15 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is estimated that literally billions of residents in urban and peri-urban areas of Africa, Asia, and Latin America are served by onsite sanitation systems (e.g. various types of latrines and septic tanks). Until recently, the management of faecal sludge from these onsite systems has been grossly neglected, partially as a result of them being considered temporary solutions until sewer-based systems could be implemented. However, the perception of onsite or decentralized sanitation technologies for urban areas is gradually changing, and is increasingly being considered as long-term, sustainable options in urban areas, especially in low- and middle-income countries that lack sewer infrastructures. This is the first book dedicated to faecal sludge management. It compiles the current state of knowledge of the rapidly evolving field of faecal sludge management, and presents an integrated approach that includes technology, management, and planning based on Sandecs 20 years of experience in the field. Faecal Sludge Management: Systems Approach for Implementation and Operation addresses the organization of the entire faecal sludge management service chain, from the collection and transport of sludge, and the current state of knowledge of treatment options, to the final end use or disposal of treated sludge. The book also presents important factors to consider when evaluating and upscaling new treatment technology options. The book is designed for undergraduate and graduate students, and engineers and practitioners in the field who have some basic knowledge of environmental and/or wastewater engineering.


How to Design Wastewater Systems for Local Conditions in Developing Countries

How to Design Wastewater Systems for Local Conditions in Developing Countries

Author: David M. Robbins

Publisher: IWA Publishing

Published: 2014-03-15

Total Pages: 148

ISBN-13: 178040476X

DOWNLOAD EBOOK

This is a practical handbook providing a step-by-step approach to the techniques used for characterizing wastewater sources and investigating sites where collection, treatment and reuse/disposal technologies will be installed. It is intended to help enable local implementation of on-site and decentralized wastewater management system (DWMS)for wide scale use in development settings. How to Design Wastewater Systems for Local Conditions in Developing Countries helps local service providers and regulatory officials make informed decisions through the use of tools, checklists and case studies. It includes a link to a web based community of on-site and decentralized wastewater professionals, which contains related tools and case studies. This handbook serves as a reference for training classes, certification programs, and higher education programs in civil and sanitary engineering. There is an increasing interest on the part of local government officials and private sector service providers to implement wastewater treatment systems to solve sanitation problems. The model presented in this handbook promotes activities that first generate data related to source and site conditions that represent critical inputs, and then applies this information to the technology selection process. Matching the most appropriate technologies to the specific needs of the wastewater project is the key that leads to long term sustainability. How to Design Wastewater Systems for Local Conditions in Developing Countries is an invaluable resource for public sector decision makers and private sector service providers in developing countries. It is also a useful text for students at engineering colleges in developing countries interested in taking a class that teaches the methods of decentralized wastewater management system (DWMS) development.


Book Synopsis How to Design Wastewater Systems for Local Conditions in Developing Countries by : David M. Robbins

Download or read book How to Design Wastewater Systems for Local Conditions in Developing Countries written by David M. Robbins and published by IWA Publishing. This book was released on 2014-03-15 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a practical handbook providing a step-by-step approach to the techniques used for characterizing wastewater sources and investigating sites where collection, treatment and reuse/disposal technologies will be installed. It is intended to help enable local implementation of on-site and decentralized wastewater management system (DWMS)for wide scale use in development settings. How to Design Wastewater Systems for Local Conditions in Developing Countries helps local service providers and regulatory officials make informed decisions through the use of tools, checklists and case studies. It includes a link to a web based community of on-site and decentralized wastewater professionals, which contains related tools and case studies. This handbook serves as a reference for training classes, certification programs, and higher education programs in civil and sanitary engineering. There is an increasing interest on the part of local government officials and private sector service providers to implement wastewater treatment systems to solve sanitation problems. The model presented in this handbook promotes activities that first generate data related to source and site conditions that represent critical inputs, and then applies this information to the technology selection process. Matching the most appropriate technologies to the specific needs of the wastewater project is the key that leads to long term sustainability. How to Design Wastewater Systems for Local Conditions in Developing Countries is an invaluable resource for public sector decision makers and private sector service providers in developing countries. It is also a useful text for students at engineering colleges in developing countries interested in taking a class that teaches the methods of decentralized wastewater management system (DWMS) development.


Sanitation Safety Planning

Sanitation Safety Planning

Author: World Health Organization

Publisher: World Health Organization

Published: 2015-08-06

Total Pages: 154

ISBN-13: 9241549246

DOWNLOAD EBOOK

"Sanitation Safety Planning (SSP) is a step-by-step risk based approach to assist in the implementation of the 2006 WHO Guidelines for Safe Use of Wastewater, Excreta and Greywater in Agriculture and Aquaculture. The approach can be applied to all sanitary systems to ensure the system is managed to meet health objectives. SSP assists users to: systematically identify and manage health risk along the sanitation chain; guide investment based on actual risks, to promote health benefits and minimize adverse health impacts; provide assurance to authorities and the public on the safety of sanitation-related products and services. The SSP manual is targeted at a variety of users at different levels including; health authorities and regulators, local authorities, wastewater utility managers, sanitation enterprises and farmers, community based organizations, farmers associations and NGOs. SSP brings together actors from different sectors to identify health risks in the sanitation system and agree on improvements and regular monitoring and underscores the leadership role of the health sector."--Publisher's description.


Book Synopsis Sanitation Safety Planning by : World Health Organization

Download or read book Sanitation Safety Planning written by World Health Organization and published by World Health Organization. This book was released on 2015-08-06 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Sanitation Safety Planning (SSP) is a step-by-step risk based approach to assist in the implementation of the 2006 WHO Guidelines for Safe Use of Wastewater, Excreta and Greywater in Agriculture and Aquaculture. The approach can be applied to all sanitary systems to ensure the system is managed to meet health objectives. SSP assists users to: systematically identify and manage health risk along the sanitation chain; guide investment based on actual risks, to promote health benefits and minimize adverse health impacts; provide assurance to authorities and the public on the safety of sanitation-related products and services. The SSP manual is targeted at a variety of users at different levels including; health authorities and regulators, local authorities, wastewater utility managers, sanitation enterprises and farmers, community based organizations, farmers associations and NGOs. SSP brings together actors from different sectors to identify health risks in the sanitation system and agree on improvements and regular monitoring and underscores the leadership role of the health sector."--Publisher's description.


User-centered guidance for engineering and design of decentralized sanitation technologies

User-centered guidance for engineering and design of decentralized sanitation technologies

Author: Laura Morrison

Publisher: RTI Press

Published: 2018-06-27

Total Pages: 6

ISBN-13:

DOWNLOAD EBOOK

Technological innovations in sanitation are poised to address the great need for sanitation improvements in low-income countries. Worldwide, more than 2.4 billion people lack access to improved sanitation facilities. Innovative waste treatment and sanitation technologies aim to incorporate user-centered findings into technology engineering and design. Without a focus on users, even the most innovative technology solutions can encounter significant barriers to adoption. Drawing on a household survey conducted in urban slum communities of Ahmedabad, India, this research brief identifies toilet and sanitation preferences, amenities, and attributes that might promote adoption of improved sanitation technologies among potential user populations. This work uses supplemental insights gained from focus groups and findings from the literature. Based on our research, we offer specific guidance for engineering and design of sanitation products and technologies.


Book Synopsis User-centered guidance for engineering and design of decentralized sanitation technologies by : Laura Morrison

Download or read book User-centered guidance for engineering and design of decentralized sanitation technologies written by Laura Morrison and published by RTI Press. This book was released on 2018-06-27 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological innovations in sanitation are poised to address the great need for sanitation improvements in low-income countries. Worldwide, more than 2.4 billion people lack access to improved sanitation facilities. Innovative waste treatment and sanitation technologies aim to incorporate user-centered findings into technology engineering and design. Without a focus on users, even the most innovative technology solutions can encounter significant barriers to adoption. Drawing on a household survey conducted in urban slum communities of Ahmedabad, India, this research brief identifies toilet and sanitation preferences, amenities, and attributes that might promote adoption of improved sanitation technologies among potential user populations. This work uses supplemental insights gained from focus groups and findings from the literature. Based on our research, we offer specific guidance for engineering and design of sanitation products and technologies.


Septage Management

Septage Management

Author: Joseph W. Rezek

Publisher:

Published: 1980

Total Pages: 146

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Septage Management by : Joseph W. Rezek

Download or read book Septage Management written by Joseph W. Rezek and published by . This book was released on 1980 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Appropriate Sanitation Alternatives

Appropriate Sanitation Alternatives

Author: John M. Kalbermatten

Publisher: Johns Hopkins University Press

Published: 1982

Total Pages: 180

ISBN-13:

DOWNLOAD EBOOK

The United Nations has designated the 1980's as the International Drinking Water Supply and Sanitation Decade. Its goal is to provide two of the most fundamental human needs - safe water and sanitary disposal of human wastes - to all people. Since the technology for supplying water is better understood, the emphasis in this volume is on sanitation and waste reclamation technologies, their contributions to better health, and how they are affected by water service levels and the ability an willingness of communities to pay for the systems. This manual presents the latest field results of the research, summarizes selected portions of other publication on sanitation program planning, and describes the engineering details of alternative sanitation technologies and how they can be upgraded. The guidelines, procedures, and technologies are based on the World Bank's own research in nineteen countries. The twenty-two chapters are divided into three parts: socioeconomic aspects of sanitation program planning, sanitation program planning, and sanitation technology options. The manual is extensively illustrated with the technical diagrams of the recommended sanitation systems and their components.


Book Synopsis Appropriate Sanitation Alternatives by : John M. Kalbermatten

Download or read book Appropriate Sanitation Alternatives written by John M. Kalbermatten and published by Johns Hopkins University Press. This book was released on 1982 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The United Nations has designated the 1980's as the International Drinking Water Supply and Sanitation Decade. Its goal is to provide two of the most fundamental human needs - safe water and sanitary disposal of human wastes - to all people. Since the technology for supplying water is better understood, the emphasis in this volume is on sanitation and waste reclamation technologies, their contributions to better health, and how they are affected by water service levels and the ability an willingness of communities to pay for the systems. This manual presents the latest field results of the research, summarizes selected portions of other publication on sanitation program planning, and describes the engineering details of alternative sanitation technologies and how they can be upgraded. The guidelines, procedures, and technologies are based on the World Bank's own research in nineteen countries. The twenty-two chapters are divided into three parts: socioeconomic aspects of sanitation program planning, sanitation program planning, and sanitation technology options. The manual is extensively illustrated with the technical diagrams of the recommended sanitation systems and their components.


Small & Decentralized Wastewater Management Systems

Small & Decentralized Wastewater Management Systems

Author: Ronald W. Crites

Publisher: McGraw-Hill Science/Engineering/Math

Published: 1998-04-02

Total Pages: 1112

ISBN-13:

DOWNLOAD EBOOK

Decentralized Wastewater Management presents a comprehensive approach to the design of both conventional and innovative systems for the treatment and disposal of wastewater or the reuse of treaded effluent. Smaller treatment plants, which are the concern of most new engineers, are the primary focus of this important book.


Book Synopsis Small & Decentralized Wastewater Management Systems by : Ronald W. Crites

Download or read book Small & Decentralized Wastewater Management Systems written by Ronald W. Crites and published by McGraw-Hill Science/Engineering/Math. This book was released on 1998-04-02 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decentralized Wastewater Management presents a comprehensive approach to the design of both conventional and innovative systems for the treatment and disposal of wastewater or the reuse of treaded effluent. Smaller treatment plants, which are the concern of most new engineers, are the primary focus of this important book.


Source Separation and Decentralization for Wastewater Management

Source Separation and Decentralization for Wastewater Management

Author: Tove A. Larsen

Publisher: IWA Publishing

Published: 2013-02-01

Total Pages: 502

ISBN-13: 1843393484

DOWNLOAD EBOOK

Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group


Book Synopsis Source Separation and Decentralization for Wastewater Management by : Tove A. Larsen

Download or read book Source Separation and Decentralization for Wastewater Management written by Tove A. Larsen and published by IWA Publishing. This book was released on 2013-02-01 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group


Faecal Sludge and Septage Treatment

Faecal Sludge and Septage Treatment

Author: Kevin Tayler

Publisher: Open Access

Published: 2018-09

Total Pages: 0

ISBN-13: 9781853399879

DOWNLOAD EBOOK

Faecal Sludge and Septage Treatment confronts the urgent need to treat increasing volumes of faecal sludge and septage in the rapidly expanding towns and cities of the global south. It discusses the urban contexts that influence treatment requirements and the overall septage treatment processes.


Book Synopsis Faecal Sludge and Septage Treatment by : Kevin Tayler

Download or read book Faecal Sludge and Septage Treatment written by Kevin Tayler and published by Open Access. This book was released on 2018-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Faecal Sludge and Septage Treatment confronts the urgent need to treat increasing volumes of faecal sludge and septage in the rapidly expanding towns and cities of the global south. It discusses the urban contexts that influence treatment requirements and the overall septage treatment processes.