Computational and Statistical Methods for Chemical Engineering

Computational and Statistical Methods for Chemical Engineering

Author: Wim P. Krijnen

Publisher: CRC Press

Published: 2022-12-19

Total Pages: 399

ISBN-13: 1000822605

DOWNLOAD EBOOK

In the recent decades, the emerging new molecular measurement techniques and their subsequent availability in chemical database has allowed easier retrieval of the associated data by the chemical analyst. Before the data revolution, most books focused either on mathematical modeling of chemical processes or exploratory chemometrics. Computational and Statistical Methods for Chemical Engineering aims to combine these two approaches and provide aspiring chemical engineers a single, comprehensive account of computational and statistical methods. The book consists of four parts: Part I discusses the necessary calculus, linear algebra, and probability background that the student may or may not have encountered before. Part II provides an overview on standard computational methods and approximation techniques useful for chemical engineering systems. Part III covers the most important statistical models, starting from simple measurement models, via linear models all the way to multivariate, non-linear stochiometric models. Part IV focuses on the importance of designed experiments and robust analyses. Each chapter is accompanied by an extensive selection of theoretical and practical exercises. The book can be used in combination with any modern computational environment, such as R, Python and MATLAB. Given its easy and free availability, the book includes a bonus chapter giving a simple introduction to R programming. This book is particularly suited for undergraduate students in Chemical Engineering who require a semester course in computational and statistical methods. The background chapters on calculus, linear algebra and probability make the book entirely self-contained. The book takes its examples from the field of chemistry and chemical engineering. In this way, it motivates the student to engage actively with the material and to master the techniques that have become crucial for the modern chemical engineer.


Book Synopsis Computational and Statistical Methods for Chemical Engineering by : Wim P. Krijnen

Download or read book Computational and Statistical Methods for Chemical Engineering written by Wim P. Krijnen and published by CRC Press. This book was released on 2022-12-19 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the recent decades, the emerging new molecular measurement techniques and their subsequent availability in chemical database has allowed easier retrieval of the associated data by the chemical analyst. Before the data revolution, most books focused either on mathematical modeling of chemical processes or exploratory chemometrics. Computational and Statistical Methods for Chemical Engineering aims to combine these two approaches and provide aspiring chemical engineers a single, comprehensive account of computational and statistical methods. The book consists of four parts: Part I discusses the necessary calculus, linear algebra, and probability background that the student may or may not have encountered before. Part II provides an overview on standard computational methods and approximation techniques useful for chemical engineering systems. Part III covers the most important statistical models, starting from simple measurement models, via linear models all the way to multivariate, non-linear stochiometric models. Part IV focuses on the importance of designed experiments and robust analyses. Each chapter is accompanied by an extensive selection of theoretical and practical exercises. The book can be used in combination with any modern computational environment, such as R, Python and MATLAB. Given its easy and free availability, the book includes a bonus chapter giving a simple introduction to R programming. This book is particularly suited for undergraduate students in Chemical Engineering who require a semester course in computational and statistical methods. The background chapters on calculus, linear algebra and probability make the book entirely self-contained. The book takes its examples from the field of chemistry and chemical engineering. In this way, it motivates the student to engage actively with the material and to master the techniques that have become crucial for the modern chemical engineer.


Computational and Statistical Methods for Chemical Engineering

Computational and Statistical Methods for Chemical Engineering

Author: Wim P. Krijnen

Publisher: CRC Press

Published: 2022-12

Total Pages: 0

ISBN-13: 9781032013244

DOWNLOAD EBOOK

Before the data revolution, most books focused either on mathematical modeling of chemical processes or exploratory chemometrics. This book aims to combine these two approaches and provide aspiring chemical engineers a single, comprehensive account of computational and statistical methods. Each chapter is accompanied by extensive exercises.


Book Synopsis Computational and Statistical Methods for Chemical Engineering by : Wim P. Krijnen

Download or read book Computational and Statistical Methods for Chemical Engineering written by Wim P. Krijnen and published by CRC Press. This book was released on 2022-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Before the data revolution, most books focused either on mathematical modeling of chemical processes or exploratory chemometrics. This book aims to combine these two approaches and provide aspiring chemical engineers a single, comprehensive account of computational and statistical methods. Each chapter is accompanied by extensive exercises.


Computational Statistical Methods in Chemical Engineering

Computational Statistical Methods in Chemical Engineering

Author: Mark Christopher Molaro

Publisher:

Published: 2016

Total Pages: 182

ISBN-13:

DOWNLOAD EBOOK

Recent advances in theory and practice, have introduced a wide variety of tools from machine learning that can be applied to data intensive chemical engineering problems. This thesis covers applications of statistical learning spanning a range of relative importance of data versus existing detailed theory. In each application, the quantity and quality of data available from experimental systems are used in conjunction with an understanding of the theoretical physical laws governing system behavior to the extent they are available. A detailed generative parametric model for optical spectra of multicomponent mixtures is introduced. The application of interest is the quantification of uncertainty associated with estimating the relative abundance of mixtures of carbon nanotubes in solution. This work describes a detailed analysis of sources of uncertainty in estimation of relative abundance of chemical species in solution from optical spectroscopy. In particular, the quantification of uncertainty in mixtures with parametric uncertainty in pure component spectra is addressed. Markov Chain Monte Carlo methods are utilized to quantify uncertainty in these situations and the inaccuracy and potential for error in simpler methods is demonstrated. Strategies to improve estimation accuracy and reduce uncertainty in practical experimental situations are developed including when multiple measurements are available and with sequential data. The utilization of computational Bayesian inference in chemometric problems shows great promise in a wide variety of practical experimental applications. A related deconvolution problem is addressed in which a detailed physical model is not available, but the objective of analysis is to map from a measured vector valued signal to a sum of an unknown number of discrete contributions. The data analyzed in this application is electrical signals generated from a free surface electro-spinning apparatus. In this information poor system, MAP estimation is used to reduce the variance in estimates of the physical parameters of interest. The formulation of the estimation problem in a probabilistic context allows for the introduction of prior knowledge to compensate for a high dimensional ill-conditioned inverse problem. The estimates from this work are used to develop a productivity model expanding on previous work and showing how the uncertainty from estimation impacts system understanding. A new machine learning based method for monitoring for anomalous behavior in production oil wells is reported. The method entails a transformation of the available time series of measurements into a high-dimensional feature space representation. This transformation yields results which can be treated as static independent measurements. A new method for feature selection in one-class classification problems is developed based on approximate knowledge of the state of the system. An extension of features space transformation methods on time series data is introduced to handle multivariate data in large computationally burdensome domains by using sparse feature extraction methods. As a whole these projects demonstrate the application of modern statistical modeling methods, to achieve superior results in data driven chemical engineering challenges.


Book Synopsis Computational Statistical Methods in Chemical Engineering by : Mark Christopher Molaro

Download or read book Computational Statistical Methods in Chemical Engineering written by Mark Christopher Molaro and published by . This book was released on 2016 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in theory and practice, have introduced a wide variety of tools from machine learning that can be applied to data intensive chemical engineering problems. This thesis covers applications of statistical learning spanning a range of relative importance of data versus existing detailed theory. In each application, the quantity and quality of data available from experimental systems are used in conjunction with an understanding of the theoretical physical laws governing system behavior to the extent they are available. A detailed generative parametric model for optical spectra of multicomponent mixtures is introduced. The application of interest is the quantification of uncertainty associated with estimating the relative abundance of mixtures of carbon nanotubes in solution. This work describes a detailed analysis of sources of uncertainty in estimation of relative abundance of chemical species in solution from optical spectroscopy. In particular, the quantification of uncertainty in mixtures with parametric uncertainty in pure component spectra is addressed. Markov Chain Monte Carlo methods are utilized to quantify uncertainty in these situations and the inaccuracy and potential for error in simpler methods is demonstrated. Strategies to improve estimation accuracy and reduce uncertainty in practical experimental situations are developed including when multiple measurements are available and with sequential data. The utilization of computational Bayesian inference in chemometric problems shows great promise in a wide variety of practical experimental applications. A related deconvolution problem is addressed in which a detailed physical model is not available, but the objective of analysis is to map from a measured vector valued signal to a sum of an unknown number of discrete contributions. The data analyzed in this application is electrical signals generated from a free surface electro-spinning apparatus. In this information poor system, MAP estimation is used to reduce the variance in estimates of the physical parameters of interest. The formulation of the estimation problem in a probabilistic context allows for the introduction of prior knowledge to compensate for a high dimensional ill-conditioned inverse problem. The estimates from this work are used to develop a productivity model expanding on previous work and showing how the uncertainty from estimation impacts system understanding. A new machine learning based method for monitoring for anomalous behavior in production oil wells is reported. The method entails a transformation of the available time series of measurements into a high-dimensional feature space representation. This transformation yields results which can be treated as static independent measurements. A new method for feature selection in one-class classification problems is developed based on approximate knowledge of the state of the system. An extension of features space transformation methods on time series data is introduced to handle multivariate data in large computationally burdensome domains by using sparse feature extraction methods. As a whole these projects demonstrate the application of modern statistical modeling methods, to achieve superior results in data driven chemical engineering challenges.


NUMERICAL, SYMBOLIC AND STATISTICAL COMPUTING FOR CHEMICAL ENGINEERS USING MATLAB

NUMERICAL, SYMBOLIC AND STATISTICAL COMPUTING FOR CHEMICAL ENGINEERS USING MATLAB

Author: Ghosh, Pallab

Publisher: PHI Learning Pvt. Ltd.

Published: 2018-09-01

Total Pages: 416

ISBN-13: 9387472523

DOWNLOAD EBOOK

Numerical, analytical and statistical computations are routine affairs for chemical engineers. They usually prefer a single software to solve their computational problems, and at present, MATLAB has emerged as a powerful computational language, which is preferably used for this purpose, due to its built-in functions and toolboxes. Considering the needs and convenience of the students, the author has made an attempt to write this book, which explains the various concepts of MATLAB in a systematic way and makes its readers proficient in using MATLAB for computing. It mainly focuses on the applications of MATLAB, rather than its use in programming basic numerical algorithms. Commencing with the introduction to MATLAB, the text covers vector and matrix computations, solution of linear and non-linear equations, differentiation and integration, and solution of ordinary and partial differential equations. Next, analytical computations using the Symbolic Math Toolbox and statistical computations using the Statistics and Machine Learning Toolbox are explained. Finally, the book describes various curve fitting techniques using the Curve Fitting Toolbox. Inclusion of all these advanced-level topics in the book stands it out from the rest. KEY FEATURES  Numerous worked-out examples to enable the readers understand the steps involved in solving the chemical engineering problems  MATLAB codes to explain the computational techniques  Several snapshots to help the readers understand the step-by-step procedures of using the toolboxes  Chapter-end exercises, including short-answer questions and numerical problems  Appendix comprising the definitions of some important and special matrices  Supplemented with Solutions Manual containing complete detailed solutions to the unsolved analytical problems  Accessibility of selected colour figures (including screenshots and results/outputs of the programs) cited in the text at www.phindia.com/Pallab_Ghosh. TARGET AUDIENCE • BE/B.Tech (Chemical Engineering) • ME/M.Tech (Chemical Engineering)


Book Synopsis NUMERICAL, SYMBOLIC AND STATISTICAL COMPUTING FOR CHEMICAL ENGINEERS USING MATLAB by : Ghosh, Pallab

Download or read book NUMERICAL, SYMBOLIC AND STATISTICAL COMPUTING FOR CHEMICAL ENGINEERS USING MATLAB written by Ghosh, Pallab and published by PHI Learning Pvt. Ltd.. This book was released on 2018-09-01 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical, analytical and statistical computations are routine affairs for chemical engineers. They usually prefer a single software to solve their computational problems, and at present, MATLAB has emerged as a powerful computational language, which is preferably used for this purpose, due to its built-in functions and toolboxes. Considering the needs and convenience of the students, the author has made an attempt to write this book, which explains the various concepts of MATLAB in a systematic way and makes its readers proficient in using MATLAB for computing. It mainly focuses on the applications of MATLAB, rather than its use in programming basic numerical algorithms. Commencing with the introduction to MATLAB, the text covers vector and matrix computations, solution of linear and non-linear equations, differentiation and integration, and solution of ordinary and partial differential equations. Next, analytical computations using the Symbolic Math Toolbox and statistical computations using the Statistics and Machine Learning Toolbox are explained. Finally, the book describes various curve fitting techniques using the Curve Fitting Toolbox. Inclusion of all these advanced-level topics in the book stands it out from the rest. KEY FEATURES  Numerous worked-out examples to enable the readers understand the steps involved in solving the chemical engineering problems  MATLAB codes to explain the computational techniques  Several snapshots to help the readers understand the step-by-step procedures of using the toolboxes  Chapter-end exercises, including short-answer questions and numerical problems  Appendix comprising the definitions of some important and special matrices  Supplemented with Solutions Manual containing complete detailed solutions to the unsolved analytical problems  Accessibility of selected colour figures (including screenshots and results/outputs of the programs) cited in the text at www.phindia.com/Pallab_Ghosh. TARGET AUDIENCE • BE/B.Tech (Chemical Engineering) • ME/M.Tech (Chemical Engineering)


Computational Methods in Chemical Engineering with Maple

Computational Methods in Chemical Engineering with Maple

Author: Ralph E. White

Publisher: Springer Science & Business Media

Published: 2010-02-06

Total Pages: 871

ISBN-13: 3642043119

DOWNLOAD EBOOK

This book presents Maple solutions to a wide range of problems relevant to chemical engineers and others. Many of these solutions use Maple’s symbolic capability to help bridge the gap between analytical and numerical solutions. The readers are strongly encouraged to refer to the references included in the book for a better understanding of the physics involved, and for the mathematical analysis. This book was written for a senior undergraduate or a first year graduate student course in chemical engineering. Most of the examples in this book were done in Maple 10. However, the codes should run in the most recent version of Maple. We strongly encourage the readers to use the classic worksheet (*. mws) option in Maple as we believe it is more user-friendly and robust. In chapter one you will find an introduction to Maple which includes simple basics as a convenience for the reader such as plotting, solving linear and nonlinear equations, Laplace transformations, matrix operations, ‘do loop,’ and ‘while loop. ’ Chapter two presents linear ordinary differential equations in section 1 to include homogeneous and nonhomogeneous ODEs, solving systems of ODEs using the matrix exponential and Laplace transform method. In section two of chapter two, nonlinear ordinary differential equations are presented and include simultaneous series reactions, solving nonlinear ODEs with Maple’s ‘dsolve’ command, stop conditions, differential algebraic equations, and steady state solutions. Chapter three addresses boundary value problems.


Book Synopsis Computational Methods in Chemical Engineering with Maple by : Ralph E. White

Download or read book Computational Methods in Chemical Engineering with Maple written by Ralph E. White and published by Springer Science & Business Media. This book was released on 2010-02-06 with total page 871 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents Maple solutions to a wide range of problems relevant to chemical engineers and others. Many of these solutions use Maple’s symbolic capability to help bridge the gap between analytical and numerical solutions. The readers are strongly encouraged to refer to the references included in the book for a better understanding of the physics involved, and for the mathematical analysis. This book was written for a senior undergraduate or a first year graduate student course in chemical engineering. Most of the examples in this book were done in Maple 10. However, the codes should run in the most recent version of Maple. We strongly encourage the readers to use the classic worksheet (*. mws) option in Maple as we believe it is more user-friendly and robust. In chapter one you will find an introduction to Maple which includes simple basics as a convenience for the reader such as plotting, solving linear and nonlinear equations, Laplace transformations, matrix operations, ‘do loop,’ and ‘while loop. ’ Chapter two presents linear ordinary differential equations in section 1 to include homogeneous and nonhomogeneous ODEs, solving systems of ODEs using the matrix exponential and Laplace transform method. In section two of chapter two, nonlinear ordinary differential equations are presented and include simultaneous series reactions, solving nonlinear ODEs with Maple’s ‘dsolve’ command, stop conditions, differential algebraic equations, and steady state solutions. Chapter three addresses boundary value problems.


Computational Techniques for Chemical Engineers

Computational Techniques for Chemical Engineers

Author: C. Storey

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 355

ISBN-13: 148315713X

DOWNLOAD EBOOK

Computational Techniques for Chemical Engineers offers a practical guide to the chemical engineer faced with a problem of computing. The computer is a servant not a master, its value depends on the instructions it is given. This book aims to help the chemical engineer in the right choice of these instructions. The text begins by outlining the principles of operation of digital and analogue computers and then discussing the difficulties which arise in formulating a problem for solution on such a machine. This is followed by separate chapters on digital computers and their programming; the use of digital computers in chemical engineering design work; optimization techniques and their application in the selection of optimum designs; the solution of sets of non-linear algebraic equations via hill-climbing; and determination of equilibrium compositions by minimization of Gibbs free energy. Subsequent chapters discuss the solution of partial or simultaneous differential equations; parameter estimation in differential equations; continuous systems; and analogue computers.


Book Synopsis Computational Techniques for Chemical Engineers by : C. Storey

Download or read book Computational Techniques for Chemical Engineers written by C. Storey and published by Elsevier. This book was released on 2013-10-22 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Techniques for Chemical Engineers offers a practical guide to the chemical engineer faced with a problem of computing. The computer is a servant not a master, its value depends on the instructions it is given. This book aims to help the chemical engineer in the right choice of these instructions. The text begins by outlining the principles of operation of digital and analogue computers and then discussing the difficulties which arise in formulating a problem for solution on such a machine. This is followed by separate chapters on digital computers and their programming; the use of digital computers in chemical engineering design work; optimization techniques and their application in the selection of optimum designs; the solution of sets of non-linear algebraic equations via hill-climbing; and determination of equilibrium compositions by minimization of Gibbs free energy. Subsequent chapters discuss the solution of partial or simultaneous differential equations; parameter estimation in differential equations; continuous systems; and analogue computers.


Computational Methods in Chemical Engineering

Computational Methods in Chemical Engineering

Author: Owen T. Hanna

Publisher: Prentice Hall

Published: 1995

Total Pages: 488

ISBN-13:

DOWNLOAD EBOOK

Authors Owen Hanna and Orville Sandall include broad use of convergence acceleration techniques such as Pade approximation for series; Shanks transformation for series; linear and nonlinear systems of algebraic equations; systematic use of global Richardson extrapolation for integrals and ODE systems to monitor the overall error; and discussion of methods for the solution of stiff ODE.


Book Synopsis Computational Methods in Chemical Engineering by : Owen T. Hanna

Download or read book Computational Methods in Chemical Engineering written by Owen T. Hanna and published by Prentice Hall. This book was released on 1995 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authors Owen Hanna and Orville Sandall include broad use of convergence acceleration techniques such as Pade approximation for series; Shanks transformation for series; linear and nonlinear systems of algebraic equations; systematic use of global Richardson extrapolation for integrals and ODE systems to monitor the overall error; and discussion of methods for the solution of stiff ODE.


Applications of Statistical Methods in Computational Fluid Dynamics for Precipitation and Combustion

Applications of Statistical Methods in Computational Fluid Dynamics for Precipitation and Combustion

Author: Alexander William Abboud

Publisher:

Published: 2015

Total Pages: 162

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Applications of Statistical Methods in Computational Fluid Dynamics for Precipitation and Combustion by : Alexander William Abboud

Download or read book Applications of Statistical Methods in Computational Fluid Dynamics for Precipitation and Combustion written by Alexander William Abboud and published by . This book was released on 2015 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Numerical, Symbolic and Statistical Computing for Chemical E

Numerical, Symbolic and Statistical Computing for Chemical E

Author: Pallab Ghosh

Publisher:

Published: 2018-10-30

Total Pages:

ISBN-13: 9789387472518

DOWNLOAD EBOOK


Book Synopsis Numerical, Symbolic and Statistical Computing for Chemical E by : Pallab Ghosh

Download or read book Numerical, Symbolic and Statistical Computing for Chemical E written by Pallab Ghosh and published by . This book was released on 2018-10-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Scientific Computing in Chemical Engineering II

Scientific Computing in Chemical Engineering II

Author: Frerich Keil

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 457

ISBN-13: 3642601855

DOWNLOAD EBOOK

The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as the simulation of reactive flows, reaction engineering, reaction diffusion problems, and molecular properties. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.


Book Synopsis Scientific Computing in Chemical Engineering II by : Frerich Keil

Download or read book Scientific Computing in Chemical Engineering II written by Frerich Keil and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as the simulation of reactive flows, reaction engineering, reaction diffusion problems, and molecular properties. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.