Computational Fluid Dynamics and Reacting Gas Flows

Computational Fluid Dynamics and Reacting Gas Flows

Author: Bjorn Engquist

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 351

ISBN-13: 146123882X

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications COMPUTATIONAL FLUID DYNAMICS AND REACTING GAS FLOWS is in part the proceedings of a workshop which was an integral part of the 1986-87 IMA program on SCIENTIFIC COMPUTATION. We are grateful to the Scientific Committee: Bjorn Engquist (Chairman), Roland Glowinski, Mitchell Luskin and Andrew Majda for planning and implementing an exciting and stimulating year-long program. We especially thank the Workshop Organizers, Bjorn Engquist, Mitchell Luskin and Andrew Majda, for organizing a workshop which brought together many of the leading researchers in the area of computational fluid dynamics. George R. Sell Hans Weinberger PREFACE Computational fluid dynamics has always been of central importance in scientific computing. It is also a field which clearly displays the essential theme of interaction between mathematics, physics, and computer science. Therefore, it was natural for the first workshop of the 1986- 87 program on scientific computing at the Institute for Mathematics and Its Applications to concentrate on computational fluid dynamics. In the workshop, more traditional fields were mixed with fields of emerging importance such as reacting gas flows and non-Newtonian flows. The workshop was marked by a high level of interaction and discussion among researchers representing varied "schools of thought" and countries.


Book Synopsis Computational Fluid Dynamics and Reacting Gas Flows by : Bjorn Engquist

Download or read book Computational Fluid Dynamics and Reacting Gas Flows written by Bjorn Engquist and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications COMPUTATIONAL FLUID DYNAMICS AND REACTING GAS FLOWS is in part the proceedings of a workshop which was an integral part of the 1986-87 IMA program on SCIENTIFIC COMPUTATION. We are grateful to the Scientific Committee: Bjorn Engquist (Chairman), Roland Glowinski, Mitchell Luskin and Andrew Majda for planning and implementing an exciting and stimulating year-long program. We especially thank the Workshop Organizers, Bjorn Engquist, Mitchell Luskin and Andrew Majda, for organizing a workshop which brought together many of the leading researchers in the area of computational fluid dynamics. George R. Sell Hans Weinberger PREFACE Computational fluid dynamics has always been of central importance in scientific computing. It is also a field which clearly displays the essential theme of interaction between mathematics, physics, and computer science. Therefore, it was natural for the first workshop of the 1986- 87 program on scientific computing at the Institute for Mathematics and Its Applications to concentrate on computational fluid dynamics. In the workshop, more traditional fields were mixed with fields of emerging importance such as reacting gas flows and non-Newtonian flows. The workshop was marked by a high level of interaction and discussion among researchers representing varied "schools of thought" and countries.


Computational Fluid Dynamics Simulation of Chemically Reacting Gas Flows Through Microfibrous Materials

Computational Fluid Dynamics Simulation of Chemically Reacting Gas Flows Through Microfibrous Materials

Author: Ravi Kumar Duggirala

Publisher:

Published: 2008

Total Pages: 250

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Computational Fluid Dynamics Simulation of Chemically Reacting Gas Flows Through Microfibrous Materials by : Ravi Kumar Duggirala

Download or read book Computational Fluid Dynamics Simulation of Chemically Reacting Gas Flows Through Microfibrous Materials written by Ravi Kumar Duggirala and published by . This book was released on 2008 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice

Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice

Author: Pannala, Sreekanth

Publisher: IGI Global

Published: 2010-09-30

Total Pages: 500

ISBN-13: 1615206523

DOWNLOAD EBOOK

"This book provides various approaches to computational gas-solids flow and will aid the researchers, graduate students and practicing engineers in this rapidly expanding area"--Provided by publisher.


Book Synopsis Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice by : Pannala, Sreekanth

Download or read book Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice written by Pannala, Sreekanth and published by IGI Global. This book was released on 2010-09-30 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides various approaches to computational gas-solids flow and will aid the researchers, graduate students and practicing engineers in this rapidly expanding area"--Provided by publisher.


Computational Reacting Gas Dynamics

Computational Reacting Gas Dynamics

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-17

Total Pages: 142

ISBN-13: 9781722973773

DOWNLOAD EBOOK

In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP). Lam, S. H. Unspecified Center CHEMICAL REACTIONS; COMPLEX SYSTEMS; COMPUTATIONAL FLUID DYNAMICS; GAS DYNAMICS; REACTING FLOW; SIMPLIFICATION; FLOW DISTRIBUTION; PERTURBATION; REACTION KINETICS...


Book Synopsis Computational Reacting Gas Dynamics by : National Aeronautics and Space Administration (NASA)

Download or read book Computational Reacting Gas Dynamics written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-17 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP). Lam, S. H. Unspecified Center CHEMICAL REACTIONS; COMPLEX SYSTEMS; COMPUTATIONAL FLUID DYNAMICS; GAS DYNAMICS; REACTING FLOW; SIMPLIFICATION; FLOW DISTRIBUTION; PERTURBATION; REACTION KINETICS...


Computational Fluid Dynamics for Engineers

Computational Fluid Dynamics for Engineers

Author: Bengt Andersson

Publisher: Cambridge University Press

Published: 2011-12-22

Total Pages: 203

ISBN-13: 1139505564

DOWNLOAD EBOOK

Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.


Book Synopsis Computational Fluid Dynamics for Engineers by : Bengt Andersson

Download or read book Computational Fluid Dynamics for Engineers written by Bengt Andersson and published by Cambridge University Press. This book was released on 2011-12-22 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Oleg Minin

Publisher: BoD – Books on Demand

Published: 2011-07-05

Total Pages: 412

ISBN-13: 9533071699

DOWNLOAD EBOOK

This book is planned to publish with an objective to provide a state-of-art reference book in the area of computational fluid dynamics for CFD engineers, scientists, applied physicists and post-graduate students. Also the aim of the book is the continuous and timely dissemination of new and innovative CFD research and developments. This reference book is a collection of 14 chapters characterized in 4 parts: modern principles of CFD, CFD in physics, industrial and in castle. This book provides a comprehensive overview of the computational experiment technology, numerical simulation of the hydrodynamics and heat transfer processes in a two dimensional gas, application of lattice Boltzmann method in heat transfer and fluid flow, etc. Several interesting applications area are also discusses in the book like underwater vehicle propeller, the flow behavior in gas-cooled nuclear reactors, simulation odour dispersion around windbreaks and so on.


Book Synopsis Computational Fluid Dynamics by : Oleg Minin

Download or read book Computational Fluid Dynamics written by Oleg Minin and published by BoD – Books on Demand. This book was released on 2011-07-05 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is planned to publish with an objective to provide a state-of-art reference book in the area of computational fluid dynamics for CFD engineers, scientists, applied physicists and post-graduate students. Also the aim of the book is the continuous and timely dissemination of new and innovative CFD research and developments. This reference book is a collection of 14 chapters characterized in 4 parts: modern principles of CFD, CFD in physics, industrial and in castle. This book provides a comprehensive overview of the computational experiment technology, numerical simulation of the hydrodynamics and heat transfer processes in a two dimensional gas, application of lattice Boltzmann method in heat transfer and fluid flow, etc. Several interesting applications area are also discusses in the book like underwater vehicle propeller, the flow behavior in gas-cooled nuclear reactors, simulation odour dispersion around windbreaks and so on.


Computational Fluid Dynamics for the Petrochemical Process Industry

Computational Fluid Dynamics for the Petrochemical Process Industry

Author: R.V.A. Oliemans

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 237

ISBN-13: 9401136327

DOWNLOAD EBOOK

The second of the 1989 conferences in the Shell Conference Series, held from 10 to 12 December in the Netherlands and organized by Koninklijke/Shell-Laboratorium, Amsterdam, was on "Computational Fluid Dynamics for Petrochemical Process Equip ment". The objective was to generate a shared perspective on the subject with respect to its role in the design of equipment involving complex flows. The conference was attended by scientists from four Shell laboratories and experts from universities in the USA, France, Great Britain, Germany and The Netherlands. R. V. A. Oliemans, G. Ooms and T. M. M. Verheggen formed the organizing committee. Complexities in fluid flow may arise from equipment geometry and/or the fluids themselves, which can be mUlti-component, single-phase or multiphase. Pressure and temperature gradients and any reactivity of components in the flow stream can be additional factors. Four themes were addressed: turbulent reacting and non-reacting flow, dispersed multiphase flow, separated two-phase flow and fluid flow simulation tools. The capabilities and limitations of a sequence of turbulence flow models, from the relatively simple k-£ model to direct numerical simulation and large eddy turbulence flow models, were considered for a range of petrochemical process equipment. Flow stability aspects and the potential of cellular automata for the simulation of industrial flows also received attention. The papers published in this special issue of Applied Scientific Research provide a fair representation of the Computational Fluid Dynamics topics discussed in the context of their application to petrochemical process equipment.


Book Synopsis Computational Fluid Dynamics for the Petrochemical Process Industry by : R.V.A. Oliemans

Download or read book Computational Fluid Dynamics for the Petrochemical Process Industry written by R.V.A. Oliemans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of the 1989 conferences in the Shell Conference Series, held from 10 to 12 December in the Netherlands and organized by Koninklijke/Shell-Laboratorium, Amsterdam, was on "Computational Fluid Dynamics for Petrochemical Process Equip ment". The objective was to generate a shared perspective on the subject with respect to its role in the design of equipment involving complex flows. The conference was attended by scientists from four Shell laboratories and experts from universities in the USA, France, Great Britain, Germany and The Netherlands. R. V. A. Oliemans, G. Ooms and T. M. M. Verheggen formed the organizing committee. Complexities in fluid flow may arise from equipment geometry and/or the fluids themselves, which can be mUlti-component, single-phase or multiphase. Pressure and temperature gradients and any reactivity of components in the flow stream can be additional factors. Four themes were addressed: turbulent reacting and non-reacting flow, dispersed multiphase flow, separated two-phase flow and fluid flow simulation tools. The capabilities and limitations of a sequence of turbulence flow models, from the relatively simple k-£ model to direct numerical simulation and large eddy turbulence flow models, were considered for a range of petrochemical process equipment. Flow stability aspects and the potential of cellular automata for the simulation of industrial flows also received attention. The papers published in this special issue of Applied Scientific Research provide a fair representation of the Computational Fluid Dynamics topics discussed in the context of their application to petrochemical process equipment.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Jiyuan Tu

Publisher: Butterworth-Heinemann

Published: 2018-02-06

Total Pages: 498

ISBN-13: 0081012446

DOWNLOAD EBOOK

Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems. Includes a new chapter on practical guidelines for mesh generation Provides full coverage of high-pressure fluid dynamics and the meshless approach to provide a broader overview of the application areas where CFD can be used Includes online resources with a new bonus chapter featuring detailed case studies and the latest developments in CFD


Book Synopsis Computational Fluid Dynamics by : Jiyuan Tu

Download or read book Computational Fluid Dynamics written by Jiyuan Tu and published by Butterworth-Heinemann. This book was released on 2018-02-06 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems. Includes a new chapter on practical guidelines for mesh generation Provides full coverage of high-pressure fluid dynamics and the meshless approach to provide a broader overview of the application areas where CFD can be used Includes online resources with a new bonus chapter featuring detailed case studies and the latest developments in CFD


Computational Fluid Dynamics (CFD) of Chemical Processes

Computational Fluid Dynamics (CFD) of Chemical Processes

Author: Young-Il Lim

Publisher: MDPI

Published: 2021-02-22

Total Pages: 114

ISBN-13: 3039439332

DOWNLOAD EBOOK

In this Special Issue, one review paper highlights the necessity of multiscale CFD, coupling micro- and macro-scales, for exchanging information at the interface of the two scales. Four research papers investigate the hydrodynamics, heat transfer, and chemical reactions of various processes using Eulerian CFD modeling. CFD models are attractive for industrial applications. However, substantial efforts in physical modeling and numerical implementation are still required before their widespread implementation.


Book Synopsis Computational Fluid Dynamics (CFD) of Chemical Processes by : Young-Il Lim

Download or read book Computational Fluid Dynamics (CFD) of Chemical Processes written by Young-Il Lim and published by MDPI. This book was released on 2021-02-22 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this Special Issue, one review paper highlights the necessity of multiscale CFD, coupling micro- and macro-scales, for exchanging information at the interface of the two scales. Four research papers investigate the hydrodynamics, heat transfer, and chemical reactions of various processes using Eulerian CFD modeling. CFD models are attractive for industrial applications. However, substantial efforts in physical modeling and numerical implementation are still required before their widespread implementation.


Computational Flow Modeling for Chemical Reactor Engineering

Computational Flow Modeling for Chemical Reactor Engineering

Author: Vivek V. Ranade

Publisher: Academic Press

Published: 2002

Total Pages: 476

ISBN-13: 0125769601

DOWNLOAD EBOOK

The book relates the individual aspects of chemical reactor engineering and computational flow modeling in a coherent way to explain the potential of computational flow modeling for reactor engineering research and practice.


Book Synopsis Computational Flow Modeling for Chemical Reactor Engineering by : Vivek V. Ranade

Download or read book Computational Flow Modeling for Chemical Reactor Engineering written by Vivek V. Ranade and published by Academic Press. This book was released on 2002 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book relates the individual aspects of chemical reactor engineering and computational flow modeling in a coherent way to explain the potential of computational flow modeling for reactor engineering research and practice.