Computational Fluid Mechanics and Heat Transfer, Second Edition

Computational Fluid Mechanics and Heat Transfer, Second Edition

Author: Richard H. Pletcher

Publisher: CRC Press

Published: 1997-04-01

Total Pages: 828

ISBN-13: 9781560320463

DOWNLOAD EBOOK

This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.


Book Synopsis Computational Fluid Mechanics and Heat Transfer, Second Edition by : Richard H. Pletcher

Download or read book Computational Fluid Mechanics and Heat Transfer, Second Edition written by Richard H. Pletcher and published by CRC Press. This book was released on 1997-04-01 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.


Computational Fluid Mechanics and Heat Transfer, Third Edition

Computational Fluid Mechanics and Heat Transfer, Third Edition

Author: Richard H. Pletcher

Publisher: CRC Press

Published: 2012-08-30

Total Pages: 777

ISBN-13: 1591690374

DOWNLOAD EBOOK

Thoroughly updated to include the latest developments in the field, this classic text on finite-difference and finite-volume computational methods maintains the fundamental concepts covered in the first edition. As an introductory text for advanced undergraduates and first-year graduate students, Computational Fluid Mechanics and Heat Transfer, Third Edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer. Divided into two parts, the book first lays the groundwork for the essential concepts preceding the fluids equations in the second part. It includes expanded coverage of turbulence and large-eddy simulation (LES) and additional material included on detached-eddy simulation (DES) and direct numerical simulation (DNS). Designed as a valuable resource for practitioners and students, new homework problems have been added to further enhance the student’s understanding of the fundamentals and applications.


Book Synopsis Computational Fluid Mechanics and Heat Transfer, Third Edition by : Richard H. Pletcher

Download or read book Computational Fluid Mechanics and Heat Transfer, Third Edition written by Richard H. Pletcher and published by CRC Press. This book was released on 2012-08-30 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly updated to include the latest developments in the field, this classic text on finite-difference and finite-volume computational methods maintains the fundamental concepts covered in the first edition. As an introductory text for advanced undergraduates and first-year graduate students, Computational Fluid Mechanics and Heat Transfer, Third Edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer. Divided into two parts, the book first lays the groundwork for the essential concepts preceding the fluids equations in the second part. It includes expanded coverage of turbulence and large-eddy simulation (LES) and additional material included on detached-eddy simulation (DES) and direct numerical simulation (DNS). Designed as a valuable resource for practitioners and students, new homework problems have been added to further enhance the student’s understanding of the fundamentals and applications.


Computational Fluid Mechanics and Heat Transfer

Computational Fluid Mechanics and Heat Transfer

Author: Dale Anderson

Publisher: CRC Press

Published: 2020-12-17

Total Pages: 975

ISBN-13: 1351124013

DOWNLOAD EBOOK

Computational Fluid Mechanics and Heat Transfer, Fourth Edition is a fully updated version of the classic text on finite-difference and finite-volume computational methods. Divided into two parts, the text covers essential concepts in the first part, and then moves on to fluids equations in the second. Designed as a valuable resource for practitioners and students, new examples and homework problems have been added to further enhance the student’s understanding of the fundamentals and applications. Provides a thoroughly updated presentation of CFD and computational heat transfer Covers more material than other texts, organized for classroom instruction and self-study Presents a wide range of computation strategies for fluid flow and heat transfer Includes new sections on finite element methods, computational heat transfer, and multiphase flows Features a full Solutions Manual and Figure Slides for classroom projection Written as an introductory text for advanced undergraduates and first-year graduate students, the new edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer.


Book Synopsis Computational Fluid Mechanics and Heat Transfer by : Dale Anderson

Download or read book Computational Fluid Mechanics and Heat Transfer written by Dale Anderson and published by CRC Press. This book was released on 2020-12-17 with total page 975 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Mechanics and Heat Transfer, Fourth Edition is a fully updated version of the classic text on finite-difference and finite-volume computational methods. Divided into two parts, the text covers essential concepts in the first part, and then moves on to fluids equations in the second. Designed as a valuable resource for practitioners and students, new examples and homework problems have been added to further enhance the student’s understanding of the fundamentals and applications. Provides a thoroughly updated presentation of CFD and computational heat transfer Covers more material than other texts, organized for classroom instruction and self-study Presents a wide range of computation strategies for fluid flow and heat transfer Includes new sections on finite element methods, computational heat transfer, and multiphase flows Features a full Solutions Manual and Figure Slides for classroom projection Written as an introductory text for advanced undergraduates and first-year graduate students, the new edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Jiyuan Tu

Publisher: Butterworth-Heinemann

Published: 2012-11-07

Total Pages: 458

ISBN-13: 0080982433

DOWNLOAD EBOOK

An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .


Book Synopsis Computational Fluid Dynamics by : Jiyuan Tu

Download or read book Computational Fluid Dynamics written by Jiyuan Tu and published by Butterworth-Heinemann. This book was released on 2012-11-07 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .


Computational Fluid Dynamics and Heat Transfer

Computational Fluid Dynamics and Heat Transfer

Author: Pradip Majumdar

Publisher: CRC Press

Published: 2021-12-29

Total Pages: 696

ISBN-13: 1498703755

DOWNLOAD EBOOK

This book provides a thorough understanding of fluid dynamics and heat and mass transfer. The Second Edition contains new chapters on mesh generation and computational modeling of turbulent flow. Combining theory and practice in classic problems and computer code, the text includes numerous worked-out examples. Students will be able to develop computational analysis models for complex problems more efficiently using commercial codes such as ANSYS, STAR CCM+, and COMSOL. With detailed explanations on how to implement computational methodology into computer code, students will be able to solve complex problems on their own and develop their own customized simulation models, including problems in heat transfer, mass transfer, and fluid flows. These problems are solved and illustrated in step-by-step derivations and figures. FEATURES Provides unified coverage of computational heat transfer and fluid dynamics Covers basic concepts and then applies computational methods for problem analysis and solution Covers most common higher-order time-approximation schemes Covers most common and advanced linear solvers Contains new chapters on mesh generation and computer modeling of turbulent flow Computational Fluid Dynamics and Heat Transfer, Second Edition, is valuable to engineering instructors and students taking courses in computational heat transfer and computational fluid dynamics.


Book Synopsis Computational Fluid Dynamics and Heat Transfer by : Pradip Majumdar

Download or read book Computational Fluid Dynamics and Heat Transfer written by Pradip Majumdar and published by CRC Press. This book was released on 2021-12-29 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough understanding of fluid dynamics and heat and mass transfer. The Second Edition contains new chapters on mesh generation and computational modeling of turbulent flow. Combining theory and practice in classic problems and computer code, the text includes numerous worked-out examples. Students will be able to develop computational analysis models for complex problems more efficiently using commercial codes such as ANSYS, STAR CCM+, and COMSOL. With detailed explanations on how to implement computational methodology into computer code, students will be able to solve complex problems on their own and develop their own customized simulation models, including problems in heat transfer, mass transfer, and fluid flows. These problems are solved and illustrated in step-by-step derivations and figures. FEATURES Provides unified coverage of computational heat transfer and fluid dynamics Covers basic concepts and then applies computational methods for problem analysis and solution Covers most common higher-order time-approximation schemes Covers most common and advanced linear solvers Contains new chapters on mesh generation and computer modeling of turbulent flow Computational Fluid Dynamics and Heat Transfer, Second Edition, is valuable to engineering instructors and students taking courses in computational heat transfer and computational fluid dynamics.


Numerical Heat Transfer and Fluid Flow

Numerical Heat Transfer and Fluid Flow

Author: Suhas Patankar

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 218

ISBN-13: 1351991515

DOWNLOAD EBOOK

This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.


Book Synopsis Numerical Heat Transfer and Fluid Flow by : Suhas Patankar

Download or read book Numerical Heat Transfer and Fluid Flow written by Suhas Patankar and published by CRC Press. This book was released on 2018-10-08 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.


Computational Fluid Mechanics and Heat Transfer

Computational Fluid Mechanics and Heat Transfer

Author: Dale Arden Anderson

Publisher: CRC Press

Published: 2020-11

Total Pages: 946

ISBN-13: 9781351124027

DOWNLOAD EBOOK

Computational Fluid Mechanics and Heat Transfer, Fourth Edition is a fully updated version of the classic text on finite-difference and finite-volume computational methods. Divided into two parts, the text covers essential concepts, and then moves on to fluids equations in the second part. Designed as a valuable resource for practitioners and students, new examples and homework problems have been added to further enhance the student's understanding of the fundamentals and applications. Provides a thoroughly updated presentation of CFD and computational heat transfer Covers more material than other texts, organized for classroom instruction and self-study Presents a range of flow computation strategies and extensive computational heat transfer coverage Includes more extensive coverage of computational heat transfer methods Features a full Solutions Manual and Figure Slides for classroom projection Written as an introductory text for advanced undergraduates and first-year graduate students, the new edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer.


Book Synopsis Computational Fluid Mechanics and Heat Transfer by : Dale Arden Anderson

Download or read book Computational Fluid Mechanics and Heat Transfer written by Dale Arden Anderson and published by CRC Press. This book was released on 2020-11 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Mechanics and Heat Transfer, Fourth Edition is a fully updated version of the classic text on finite-difference and finite-volume computational methods. Divided into two parts, the text covers essential concepts, and then moves on to fluids equations in the second part. Designed as a valuable resource for practitioners and students, new examples and homework problems have been added to further enhance the student's understanding of the fundamentals and applications. Provides a thoroughly updated presentation of CFD and computational heat transfer Covers more material than other texts, organized for classroom instruction and self-study Presents a range of flow computation strategies and extensive computational heat transfer coverage Includes more extensive coverage of computational heat transfer methods Features a full Solutions Manual and Figure Slides for classroom projection Written as an introductory text for advanced undergraduates and first-year graduate students, the new edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: T. J. Chung

Publisher: Cambridge University Press

Published: 2010-09-27

Total Pages:

ISBN-13: 1139493299

DOWNLOAD EBOOK

The second edition of Computational Fluid Dynamics represents a significant improvement from the first edition. However, the original idea of including all computational fluid dynamics methods (FDM, FEM, FVM); all mesh generation schemes; and physical applications to turbulence, combustion, acoustics, radiative heat transfer, multiphase flow, electromagnetic flow, and general relativity is still maintained. The second edition includes a new section on preconditioning for EBE-GMRES and a complete revision of the section on flowfield-dependent variation methods, which demonstrates more detailed computational processes and includes additional example problems. For those instructors desiring a textbook that contains homework assignments, a variety of problems for FDM, FEM and FVM are included in an appendix. To facilitate students and practitioners intending to develop a large-scale computer code, an example of FORTRAN code capable of solving compressible, incompressible, viscous, inviscid, 1D, 2D and 3D for all speed regimes using the flowfield-dependent variation method is made available.


Book Synopsis Computational Fluid Dynamics by : T. J. Chung

Download or read book Computational Fluid Dynamics written by T. J. Chung and published by Cambridge University Press. This book was released on 2010-09-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of Computational Fluid Dynamics represents a significant improvement from the first edition. However, the original idea of including all computational fluid dynamics methods (FDM, FEM, FVM); all mesh generation schemes; and physical applications to turbulence, combustion, acoustics, radiative heat transfer, multiphase flow, electromagnetic flow, and general relativity is still maintained. The second edition includes a new section on preconditioning for EBE-GMRES and a complete revision of the section on flowfield-dependent variation methods, which demonstrates more detailed computational processes and includes additional example problems. For those instructors desiring a textbook that contains homework assignments, a variety of problems for FDM, FEM and FVM are included in an appendix. To facilitate students and practitioners intending to develop a large-scale computer code, an example of FORTRAN code capable of solving compressible, incompressible, viscous, inviscid, 1D, 2D and 3D for all speed regimes using the flowfield-dependent variation method is made available.


Essential Computational Fluid Dynamics

Essential Computational Fluid Dynamics

Author: Oleg Zikanov

Publisher: John Wiley & Sons

Published: 2019-08-30

Total Pages: 327

ISBN-13: 1119474817

DOWNLOAD EBOOK

Provides a clear, concise, and self-contained introduction to Computational Fluid Dynamics (CFD) This comprehensively updated new edition covers the fundamental concepts and main methods of modern Computational Fluid Dynamics (CFD). With expert guidance and a wealth of useful techniques, the book offers a clear, concise, and accessible account of the essentials needed to perform and interpret a CFD analysis. The new edition adds a plethora of new information on such topics as the techniques of interpolation, finite volume discretization on unstructured grids, projection methods, and RANS turbulence modeling. The book has been thoroughly edited to improve clarity and to reflect the recent changes in the practice of CFD. It also features a large number of new end-of-chapter problems. All the attractive features that have contributed to the success of the first edition are retained by this version. The book remains an indispensable guide, which: Introduces CFD to students and working professionals in the areas of practical applications, such as mechanical, civil, chemical, biomedical, or environmental engineering Focuses on the needs of someone who wants to apply existing CFD software and understand how it works, rather than develop new codes Covers all the essential topics, from the basics of discretization to turbulence modeling and uncertainty analysis Discusses complex issues using simple worked examples and reinforces learning with problems Is accompanied by a website hosting lecture presentations and a solution manual Essential Computational Fluid Dynamics, Second Edition is an ideal textbook for senior undergraduate and graduate students taking their first course on CFD. It is also a useful reference for engineers and scientists working with CFD applications.


Book Synopsis Essential Computational Fluid Dynamics by : Oleg Zikanov

Download or read book Essential Computational Fluid Dynamics written by Oleg Zikanov and published by John Wiley & Sons. This book was released on 2019-08-30 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a clear, concise, and self-contained introduction to Computational Fluid Dynamics (CFD) This comprehensively updated new edition covers the fundamental concepts and main methods of modern Computational Fluid Dynamics (CFD). With expert guidance and a wealth of useful techniques, the book offers a clear, concise, and accessible account of the essentials needed to perform and interpret a CFD analysis. The new edition adds a plethora of new information on such topics as the techniques of interpolation, finite volume discretization on unstructured grids, projection methods, and RANS turbulence modeling. The book has been thoroughly edited to improve clarity and to reflect the recent changes in the practice of CFD. It also features a large number of new end-of-chapter problems. All the attractive features that have contributed to the success of the first edition are retained by this version. The book remains an indispensable guide, which: Introduces CFD to students and working professionals in the areas of practical applications, such as mechanical, civil, chemical, biomedical, or environmental engineering Focuses on the needs of someone who wants to apply existing CFD software and understand how it works, rather than develop new codes Covers all the essential topics, from the basics of discretization to turbulence modeling and uncertainty analysis Discusses complex issues using simple worked examples and reinforces learning with problems Is accompanied by a website hosting lecture presentations and a solution manual Essential Computational Fluid Dynamics, Second Edition is an ideal textbook for senior undergraduate and graduate students taking their first course on CFD. It is also a useful reference for engineers and scientists working with CFD applications.


Verification of Computer Codes in Computational Science and Engineering

Verification of Computer Codes in Computational Science and Engineering

Author: Patrick Knupp

Publisher: CRC Press

Published: 2002-10-29

Total Pages: 161

ISBN-13: 1420035428

DOWNLOAD EBOOK

How can one be assured that computer codes that solve differential equations are correct? Standard practice using benchmark testing no longer provides full coverage because today's production codes solve more complex equations using more powerful algorithms. By verifying the order-of-accuracy of the numerical algorithm implemented in the code, one can detect most any coding mistake that would prevent correct solutions from being computed. Verification of Computer Codes in Computational Science and Engineering sets forth a powerful alternative called OVMSP: Order-Verification via the Manufactured Solution Procedure. This procedure has two primary components: using the Method of Manufactured Exact Solutions to create analytic solutions to the fully-general differential equations solved by the code and using grid convergence studies to confirm the order-of-accuracy. The authors present a step-by-step procedural guide to OVMSP implementation and demonstrate its effectiveness. Properly implemented, OVMSP offers an exciting opportunity to identify virtually all coding 'bugs' that prevent correct solution of the governing partial differential equations. Verification of Computer Codes in Computational Science and Engineering shows you how this can be done. The treatment is clear, concise, and suitable both for developers of production quality simulation software and as a reference for computational science and engineering professionals.


Book Synopsis Verification of Computer Codes in Computational Science and Engineering by : Patrick Knupp

Download or read book Verification of Computer Codes in Computational Science and Engineering written by Patrick Knupp and published by CRC Press. This book was released on 2002-10-29 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: How can one be assured that computer codes that solve differential equations are correct? Standard practice using benchmark testing no longer provides full coverage because today's production codes solve more complex equations using more powerful algorithms. By verifying the order-of-accuracy of the numerical algorithm implemented in the code, one can detect most any coding mistake that would prevent correct solutions from being computed. Verification of Computer Codes in Computational Science and Engineering sets forth a powerful alternative called OVMSP: Order-Verification via the Manufactured Solution Procedure. This procedure has two primary components: using the Method of Manufactured Exact Solutions to create analytic solutions to the fully-general differential equations solved by the code and using grid convergence studies to confirm the order-of-accuracy. The authors present a step-by-step procedural guide to OVMSP implementation and demonstrate its effectiveness. Properly implemented, OVMSP offers an exciting opportunity to identify virtually all coding 'bugs' that prevent correct solution of the governing partial differential equations. Verification of Computer Codes in Computational Science and Engineering shows you how this can be done. The treatment is clear, concise, and suitable both for developers of production quality simulation software and as a reference for computational science and engineering professionals.