Computational, label, and data efficiency in deep learning for sparse 3D data

Computational, label, and data efficiency in deep learning for sparse 3D data

Author: Li, Lanxiao

Publisher: KIT Scientific Publishing

Published: 2024-05-13

Total Pages: 256

ISBN-13: 3731513463

DOWNLOAD EBOOK

Deep learning is widely applied to sparse 3D data to perform challenging tasks, e.g., 3D object detection and semantic segmentation. However, the high performance of deep learning comes with high costs, including computational costs and the effort to capture and label data. This work investigates and improves the efficiency of deep learning for sparse 3D data to overcome the obstacles to the further development of this technology.


Book Synopsis Computational, label, and data efficiency in deep learning for sparse 3D data by : Li, Lanxiao

Download or read book Computational, label, and data efficiency in deep learning for sparse 3D data written by Li, Lanxiao and published by KIT Scientific Publishing. This book was released on 2024-05-13 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is widely applied to sparse 3D data to perform challenging tasks, e.g., 3D object detection and semantic segmentation. However, the high performance of deep learning comes with high costs, including computational costs and the effort to capture and label data. This work investigates and improves the efficiency of deep learning for sparse 3D data to overcome the obstacles to the further development of this technology.


Computational, Label, and Data Efficiency in Deep Learning for Sparse 3D Data

Computational, Label, and Data Efficiency in Deep Learning for Sparse 3D Data

Author: Lanxiao Li

Publisher:

Published: 2023*

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Computational, Label, and Data Efficiency in Deep Learning for Sparse 3D Data by : Lanxiao Li

Download or read book Computational, Label, and Data Efficiency in Deep Learning for Sparse 3D Data written by Lanxiao Li and published by . This book was released on 2023* with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis

Author: S. Kevin Zhou

Publisher: Academic Press

Published: 2023-12-01

Total Pages: 544

ISBN-13: 0323858880

DOWNLOAD EBOOK

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis. · Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache


Book Synopsis Deep Learning for Medical Image Analysis by : S. Kevin Zhou

Download or read book Deep Learning for Medical Image Analysis written by S. Kevin Zhou and published by Academic Press. This book was released on 2023-12-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis. · Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache


Resource and Data Efficient Deep Learning

Resource and Data Efficient Deep Learning

Author: Cody Austun Coleman

Publisher:

Published: 2021

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Using massive computation, deep learning allows machines to translate large amounts of data into models that accurately predict the real world, enabling powerful applications like virtual assistants and autonomous vehicles. As datasets and computer systems have continued to grow in scale, so has the quality of machine learning models, creating an expensive appetite in practitioners and researchers for data and computation. To address this demand, this dissertation discusses ways to measure and improve both the computational and data efficiency of deep learning. First, we introduce DAWNBench and MLPerf as a systematic way to measure end-to-end machine learning system performance. Researchers have proposed numerous hardware, software, and algorithmic optimizations to improve the computational efficiency of deep learning. While some of these optimizations perform the same operations faster (e.g., increasing GPU clock speed), many others modify the semantics of the training procedure (e.g., reduced precision) and can even impact the final model's accuracy on unseen data. Because of these trade-offs between accuracy and computational efficiency, it has been difficult to compare and understand the impact of these optimizations. We propose and evaluate a new metric, time-to-accuracy, that can be used to compare different system designs and use it to evaluate high performing systems by organizing two public benchmark competitions, DAWNBench and MLPerf. MLPerf has now grown into an industry standard benchmark co-organized by over 70 organizations. Second, we present ways to perform data selection on large-scale datasets efficiently. Data selection methods, such as active learning and core-set selection, improve the data efficiency of machine learning by identifying the most informative data points to label or train on. Across the data selection literature, there are many ways to identify these training examples. However, classical data selection methods are prohibitively expensive to apply in deep learning because of the larger datasets and models. To make these methods tractable, we propose (1) "selection via proxy" (SVP) to avoid expensive training and reduce the computation per example and (2) "similarity search for efficient active learning and search" (SEALS) to reduce the number of examples processed. Both methods lead to order of magnitude performance improvements, making techniques like active learning on billions of unlabeled images practical for the first time.


Book Synopsis Resource and Data Efficient Deep Learning by : Cody Austun Coleman

Download or read book Resource and Data Efficient Deep Learning written by Cody Austun Coleman and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Using massive computation, deep learning allows machines to translate large amounts of data into models that accurately predict the real world, enabling powerful applications like virtual assistants and autonomous vehicles. As datasets and computer systems have continued to grow in scale, so has the quality of machine learning models, creating an expensive appetite in practitioners and researchers for data and computation. To address this demand, this dissertation discusses ways to measure and improve both the computational and data efficiency of deep learning. First, we introduce DAWNBench and MLPerf as a systematic way to measure end-to-end machine learning system performance. Researchers have proposed numerous hardware, software, and algorithmic optimizations to improve the computational efficiency of deep learning. While some of these optimizations perform the same operations faster (e.g., increasing GPU clock speed), many others modify the semantics of the training procedure (e.g., reduced precision) and can even impact the final model's accuracy on unseen data. Because of these trade-offs between accuracy and computational efficiency, it has been difficult to compare and understand the impact of these optimizations. We propose and evaluate a new metric, time-to-accuracy, that can be used to compare different system designs and use it to evaluate high performing systems by organizing two public benchmark competitions, DAWNBench and MLPerf. MLPerf has now grown into an industry standard benchmark co-organized by over 70 organizations. Second, we present ways to perform data selection on large-scale datasets efficiently. Data selection methods, such as active learning and core-set selection, improve the data efficiency of machine learning by identifying the most informative data points to label or train on. Across the data selection literature, there are many ways to identify these training examples. However, classical data selection methods are prohibitively expensive to apply in deep learning because of the larger datasets and models. To make these methods tractable, we propose (1) "selection via proxy" (SVP) to avoid expensive training and reduce the computation per example and (2) "similarity search for efficient active learning and search" (SEALS) to reduce the number of examples processed. Both methods lead to order of magnitude performance improvements, making techniques like active learning on billions of unlabeled images practical for the first time.


Deep Learning and Data Labeling for Medical Applications

Deep Learning and Data Labeling for Medical Applications

Author: Gustavo Carneiro

Publisher: Springer

Published: 2016-10-07

Total Pages: 280

ISBN-13: 3319469762

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.


Book Synopsis Deep Learning and Data Labeling for Medical Applications by : Gustavo Carneiro

Download or read book Deep Learning and Data Labeling for Medical Applications written by Gustavo Carneiro and published by Springer. This book was released on 2016-10-07 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.


Computational Texture and Patterns

Computational Texture and Patterns

Author: Kristin J. Dana

Publisher: Morgan & Claypool Publishers

Published: 2018-09-13

Total Pages: 115

ISBN-13: 168173012X

DOWNLOAD EBOOK

Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.


Book Synopsis Computational Texture and Patterns by : Kristin J. Dana

Download or read book Computational Texture and Patterns written by Kristin J. Dana and published by Morgan & Claypool Publishers. This book was released on 2018-09-13 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.


Handbook of Medical Image Computing and Computer Assisted Intervention

Handbook of Medical Image Computing and Computer Assisted Intervention

Author: S. Kevin Zhou

Publisher: Academic Press

Published: 2019-10-18

Total Pages: 1074

ISBN-13: 0128165863

DOWNLOAD EBOOK

Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. Presents the key research challenges in medical image computing and computer-assisted intervention Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society Contains state-of-the-art technical approaches to key challenges Demonstrates proven algorithms for a whole range of essential medical imaging applications Includes source codes for use in a plug-and-play manner Embraces future directions in the fields of medical image computing and computer-assisted intervention


Book Synopsis Handbook of Medical Image Computing and Computer Assisted Intervention by : S. Kevin Zhou

Download or read book Handbook of Medical Image Computing and Computer Assisted Intervention written by S. Kevin Zhou and published by Academic Press. This book was released on 2019-10-18 with total page 1074 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. Presents the key research challenges in medical image computing and computer-assisted intervention Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society Contains state-of-the-art technical approaches to key challenges Demonstrates proven algorithms for a whole range of essential medical imaging applications Includes source codes for use in a plug-and-play manner Embraces future directions in the fields of medical image computing and computer-assisted intervention


Computational Methods and Clinical Applications in Musculoskeletal Imaging

Computational Methods and Clinical Applications in Musculoskeletal Imaging

Author: Ben Glocker

Publisher: Springer

Published: 2018-01-26

Total Pages: 161

ISBN-13: 3319741136

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 5th International Workshop and Challenge on Computational Methods and Clinical Applications for Musculoskeletal Imaging, MSKI 2017, held in conjunction with MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 13 workshop papers were carefully reviewed and selected for inclusion in this volume. Topics of interest include all major aspects of musculoskeletal imaging, for example: clinical applications of musculoskeletal computational imaging; computer-aided detection and diagnosis of conditions of the bones, muscles and joints; image-guided musculoskeletal surgery and interventions; image-based assessment and monitoring of surgical and pharmacological treatment; segmentation, registration, detection, localization and visualization of the musculoskeletal anatomy; statistical and geometrical modeling of the musculoskeletal shape and appearance; image-based microstructural characterization of musculoskeletal tissue; novel techniques for musculoskeletal imaging.


Book Synopsis Computational Methods and Clinical Applications in Musculoskeletal Imaging by : Ben Glocker

Download or read book Computational Methods and Clinical Applications in Musculoskeletal Imaging written by Ben Glocker and published by Springer. This book was released on 2018-01-26 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Workshop and Challenge on Computational Methods and Clinical Applications for Musculoskeletal Imaging, MSKI 2017, held in conjunction with MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 13 workshop papers were carefully reviewed and selected for inclusion in this volume. Topics of interest include all major aspects of musculoskeletal imaging, for example: clinical applications of musculoskeletal computational imaging; computer-aided detection and diagnosis of conditions of the bones, muscles and joints; image-guided musculoskeletal surgery and interventions; image-based assessment and monitoring of surgical and pharmacological treatment; segmentation, registration, detection, localization and visualization of the musculoskeletal anatomy; statistical and geometrical modeling of the musculoskeletal shape and appearance; image-based microstructural characterization of musculoskeletal tissue; novel techniques for musculoskeletal imaging.


Deep Generative Models, and Data Augmentation, Labelling, and Imperfections

Deep Generative Models, and Data Augmentation, Labelling, and Imperfections

Author: Sandy Engelhardt

Publisher: Springer Nature

Published: 2021-09-29

Total Pages: 278

ISBN-13: 3030882101

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic. DG4MICCAI 2021 accepted 12 papers from the 17 submissions received. The workshop focusses on recent algorithmic developments, new results, and promising future directions in Deep Generative Models. Deep generative models such as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community. For DALI 2021, 15 papers from 32 submissions were accepted for publication. They focus on rigorous study of medical data related to machine learning systems.


Book Synopsis Deep Generative Models, and Data Augmentation, Labelling, and Imperfections by : Sandy Engelhardt

Download or read book Deep Generative Models, and Data Augmentation, Labelling, and Imperfections written by Sandy Engelhardt and published by Springer Nature. This book was released on 2021-09-29 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic. DG4MICCAI 2021 accepted 12 papers from the 17 submissions received. The workshop focusses on recent algorithmic developments, new results, and promising future directions in Deep Generative Models. Deep generative models such as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community. For DALI 2021, 15 papers from 32 submissions were accepted for publication. They focus on rigorous study of medical data related to machine learning systems.


Computer Vision – ECCV 2022

Computer Vision – ECCV 2022

Author: Shai Avidan

Publisher: Springer Nature

Published: 2022-11-02

Total Pages: 801

ISBN-13: 303120056X

DOWNLOAD EBOOK

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.


Book Synopsis Computer Vision – ECCV 2022 by : Shai Avidan

Download or read book Computer Vision – ECCV 2022 written by Shai Avidan and published by Springer Nature. This book was released on 2022-11-02 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.