Computational Models for Turbulent Reacting Flows

Computational Models for Turbulent Reacting Flows

Author: Rodney O. Fox

Publisher:

Published: 2003

Total Pages: 419

ISBN-13: 9781107128224

DOWNLOAD EBOOK

The current state of the art in computational models for turbulent reacting flows.


Book Synopsis Computational Models for Turbulent Reacting Flows by : Rodney O. Fox

Download or read book Computational Models for Turbulent Reacting Flows written by Rodney O. Fox and published by . This book was released on 2003 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current state of the art in computational models for turbulent reacting flows.


Computational Models for Turbulent Reacting Flows

Computational Models for Turbulent Reacting Flows

Author: Rodney O. Fox

Publisher: Cambridge University Press

Published: 2003-10-30

Total Pages: 156

ISBN-13: 9780521659079

DOWNLOAD EBOOK

Table of contents


Book Synopsis Computational Models for Turbulent Reacting Flows by : Rodney O. Fox

Download or read book Computational Models for Turbulent Reacting Flows written by Rodney O. Fox and published by Cambridge University Press. This book was released on 2003-10-30 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Table of contents


Multiphase reacting flows: modelling and simulation

Multiphase reacting flows: modelling and simulation

Author: Daniele L. Marchisio

Publisher: Springer Science & Business Media

Published: 2007-10-16

Total Pages: 269

ISBN-13: 3211724648

DOWNLOAD EBOOK

This book describes the most widely applicable modeling approaches. Chapters are organized in six groups covering from fundamentals to relevant applications. The book covers particle-based methods and also discusses Eulerian-Eulerian and Eulerian-Lagrangian techniques based on finite-volume schemes. Moreover, the possibility of modeling the poly-dispersity of the secondary phases in Eulerian-Eulerian schemes by solving the population balance equation is discussed.


Book Synopsis Multiphase reacting flows: modelling and simulation by : Daniele L. Marchisio

Download or read book Multiphase reacting flows: modelling and simulation written by Daniele L. Marchisio and published by Springer Science & Business Media. This book was released on 2007-10-16 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the most widely applicable modeling approaches. Chapters are organized in six groups covering from fundamentals to relevant applications. The book covers particle-based methods and also discusses Eulerian-Eulerian and Eulerian-Lagrangian techniques based on finite-volume schemes. Moreover, the possibility of modeling the poly-dispersity of the secondary phases in Eulerian-Eulerian schemes by solving the population balance equation is discussed.


Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows

Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows

Author: Lixing Zhou

Publisher: Butterworth-Heinemann

Published: 2018-01-25

Total Pages: 342

ISBN-13: 0128134666

DOWNLOAD EBOOK

Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering. Provides a combination of multiphase fluid dynamics, turbulence theory and combustion theory Covers physical phenomena, numerical modeling theory and methods, and their applications Presents applications in a wide range of engineering facilities, such as utility and industrial furnaces, gas-turbine and rocket engines, internal combustion engines, chemical reactors, and cyclone separators, etc.


Book Synopsis Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows by : Lixing Zhou

Download or read book Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows written by Lixing Zhou and published by Butterworth-Heinemann. This book was released on 2018-01-25 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering. Provides a combination of multiphase fluid dynamics, turbulence theory and combustion theory Covers physical phenomena, numerical modeling theory and methods, and their applications Presents applications in a wide range of engineering facilities, such as utility and industrial furnaces, gas-turbine and rocket engines, internal combustion engines, chemical reactors, and cyclone separators, etc.


Turbulent Reactive Flows

Turbulent Reactive Flows

Author: R. Borghi

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 958

ISBN-13: 146139631X

DOWNLOAD EBOOK

Turbulent reactive flows are of common occurrance in combustion engineering, chemical reactor technology and various types of engines producing power and thrust utilizing chemical and nuclear fuels. Pollutant formation and dispersion in the atmospheric environment and in rivers, lakes and ocean also involve interactions between turbulence, chemical reactivity and heat and mass transfer processes. Considerable advances have occurred over the past twenty years in the understanding, analysis, measurement, prediction and control of turbulent reactive flows. Two main contributors to such advances are improvements in instrumentation and spectacular growth in computation: hardware, sciences and skills and data processing software, each leading to developments in others. Turbulence presents several features that are situation-specific. Both for that reason and a number of others, it is yet difficult to visualize a so-called solution of the turbulence problem or even a generalized approach to the problem. It appears that recognition of patterns and structures in turbulent flow and their study based on considerations of stability, interactions, chaos and fractal character may be opening up an avenue of research that may be leading to a generalized approach to classification and analysis and, possibly, prediction of specific processes in the flowfield. Predictions for engineering use, on the other hand, can be foreseen for sometime to come to depend upon modeling of selected features of turbulence at various levels of sophistication dictated by perceived need and available capability.


Book Synopsis Turbulent Reactive Flows by : R. Borghi

Download or read book Turbulent Reactive Flows written by R. Borghi and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 958 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent reactive flows are of common occurrance in combustion engineering, chemical reactor technology and various types of engines producing power and thrust utilizing chemical and nuclear fuels. Pollutant formation and dispersion in the atmospheric environment and in rivers, lakes and ocean also involve interactions between turbulence, chemical reactivity and heat and mass transfer processes. Considerable advances have occurred over the past twenty years in the understanding, analysis, measurement, prediction and control of turbulent reactive flows. Two main contributors to such advances are improvements in instrumentation and spectacular growth in computation: hardware, sciences and skills and data processing software, each leading to developments in others. Turbulence presents several features that are situation-specific. Both for that reason and a number of others, it is yet difficult to visualize a so-called solution of the turbulence problem or even a generalized approach to the problem. It appears that recognition of patterns and structures in turbulent flow and their study based on considerations of stability, interactions, chaos and fractal character may be opening up an avenue of research that may be leading to a generalized approach to classification and analysis and, possibly, prediction of specific processes in the flowfield. Predictions for engineering use, on the other hand, can be foreseen for sometime to come to depend upon modeling of selected features of turbulence at various levels of sophistication dictated by perceived need and available capability.


An Introduction to Turbulent Reacting Flows

An Introduction to Turbulent Reacting Flows

Author: R. S. Cant

Publisher: Imperial College Press

Published: 2008

Total Pages: 192

ISBN-13: 1860947786

DOWNLOAD EBOOK

Provides physical intuition and key entries to the body of literature. This book includes historical perspective of the theories.


Book Synopsis An Introduction to Turbulent Reacting Flows by : R. S. Cant

Download or read book An Introduction to Turbulent Reacting Flows written by R. S. Cant and published by Imperial College Press. This book was released on 2008 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides physical intuition and key entries to the body of literature. This book includes historical perspective of the theories.


Modeling and Simulation of Turbulent Mixing and Reaction

Modeling and Simulation of Turbulent Mixing and Reaction

Author: Daniel Livescu

Publisher: Springer Nature

Published: 2020-02-19

Total Pages: 273

ISBN-13: 9811526435

DOWNLOAD EBOOK

This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.


Book Synopsis Modeling and Simulation of Turbulent Mixing and Reaction by : Daniel Livescu

Download or read book Modeling and Simulation of Turbulent Mixing and Reaction written by Daniel Livescu and published by Springer Nature. This book was released on 2020-02-19 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.


Research Directions in Computational Mechanics

Research Directions in Computational Mechanics

Author: National Research Council

Publisher: National Academies Press

Published: 1991-02-01

Total Pages: 145

ISBN-13: 0309046483

DOWNLOAD EBOOK

Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.


Book Synopsis Research Directions in Computational Mechanics by : National Research Council

Download or read book Research Directions in Computational Mechanics written by National Research Council and published by National Academies Press. This book was released on 1991-02-01 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.


Computational Models for Polydisperse Particulate and Multiphase Systems

Computational Models for Polydisperse Particulate and Multiphase Systems

Author: Daniele L. Marchisio

Publisher: Cambridge University Press

Published: 2013-03-28

Total Pages: 547

ISBN-13: 1107328179

DOWNLOAD EBOOK

Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modelling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal whether you are working in industry or academia. Theory is linked to practice through discussions of key real-world cases (particle/droplet/bubble coalescence, break-up, nucleation, advection and diffusion and physical- and phase-space), providing valuable experience in simulating systems that can be applied to your own applications. Practical cases of QMOM, DQMOM, CQMOM, EQMOM and ECQMOM are also discussed and compared, as are realizable finite-volume methods. This provides the tools you need to use quadrature-based moment methods, choose from the many available options, and design high-order numerical methods that guarantee realizable moment sets. In addition to the numerous practical examples, MATLAB® scripts for several algorithms are also provided, so you can apply the methods described to practical problems straight away.


Book Synopsis Computational Models for Polydisperse Particulate and Multiphase Systems by : Daniele L. Marchisio

Download or read book Computational Models for Polydisperse Particulate and Multiphase Systems written by Daniele L. Marchisio and published by Cambridge University Press. This book was released on 2013-03-28 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modelling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal whether you are working in industry or academia. Theory is linked to practice through discussions of key real-world cases (particle/droplet/bubble coalescence, break-up, nucleation, advection and diffusion and physical- and phase-space), providing valuable experience in simulating systems that can be applied to your own applications. Practical cases of QMOM, DQMOM, CQMOM, EQMOM and ECQMOM are also discussed and compared, as are realizable finite-volume methods. This provides the tools you need to use quadrature-based moment methods, choose from the many available options, and design high-order numerical methods that guarantee realizable moment sets. In addition to the numerous practical examples, MATLAB® scripts for several algorithms are also provided, so you can apply the methods described to practical problems straight away.


Statistical Mechanics of Turbulent Flows

Statistical Mechanics of Turbulent Flows

Author: Stefan Heinz

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 232

ISBN-13: 3662100223

DOWNLOAD EBOOK

The simulation of technological and environmental flows is very important for many industrial developments. A major challenge related to their modeling is to involve the characteristic turbulence that appears in most of these flows. The traditional way to tackle this question is to use deterministic equations where the effects of turbulence are directly parametrized, i. e. , assumed as functions of the variables considered. However, this approach often becomes problematic, in particular if reacting flows have to be simulated. In many cases, it turns out that appropriate approximations for the closure of deterministic equations are simply unavailable. The alternative to the traditional way of modeling turbulence is to construct stochastic models which explain the random nature of turbulence. The application of such models is very attractive: one can overcome the closure problems that are inherent to deterministic methods on the basis of relatively simple and physically consistent models. Thus, from a general point of view, the use of stochastic methods for turbulence simulations seems to be the optimal way to solve most of the problems related to industrial flow simulations. However, it turns out that this is not as simple as it looks at first glance. The first question concerns the numerical solution of stochastic equations for flows of environmental and technological interest. To calculate industrial flows, 3 one often has to consider a number of grid cells that is of the order of 100 .


Book Synopsis Statistical Mechanics of Turbulent Flows by : Stefan Heinz

Download or read book Statistical Mechanics of Turbulent Flows written by Stefan Heinz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulation of technological and environmental flows is very important for many industrial developments. A major challenge related to their modeling is to involve the characteristic turbulence that appears in most of these flows. The traditional way to tackle this question is to use deterministic equations where the effects of turbulence are directly parametrized, i. e. , assumed as functions of the variables considered. However, this approach often becomes problematic, in particular if reacting flows have to be simulated. In many cases, it turns out that appropriate approximations for the closure of deterministic equations are simply unavailable. The alternative to the traditional way of modeling turbulence is to construct stochastic models which explain the random nature of turbulence. The application of such models is very attractive: one can overcome the closure problems that are inherent to deterministic methods on the basis of relatively simple and physically consistent models. Thus, from a general point of view, the use of stochastic methods for turbulence simulations seems to be the optimal way to solve most of the problems related to industrial flow simulations. However, it turns out that this is not as simple as it looks at first glance. The first question concerns the numerical solution of stochastic equations for flows of environmental and technological interest. To calculate industrial flows, 3 one often has to consider a number of grid cells that is of the order of 100 .