Concepts and Results in Chaotic Dynamics: A Short Course

Concepts and Results in Chaotic Dynamics: A Short Course

Author: Pierre Collet

Publisher: Springer Science & Business Media

Published: 2007-07-07

Total Pages: 238

ISBN-13: 3540347062

DOWNLOAD EBOOK

The study of dynamical systems is a well established field. This book provides a panorama of several aspects of interest to mathematicians and physicists. It collects the material of several courses at the graduate level given by the authors, avoiding detailed proofs in exchange for numerous illustrations and examples. Apart from common subjects in this field, a lot of attention is given to questions of physical measurement and stochastic properties of chaotic dynamical systems.


Book Synopsis Concepts and Results in Chaotic Dynamics: A Short Course by : Pierre Collet

Download or read book Concepts and Results in Chaotic Dynamics: A Short Course written by Pierre Collet and published by Springer Science & Business Media. This book was released on 2007-07-07 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of dynamical systems is a well established field. This book provides a panorama of several aspects of interest to mathematicians and physicists. It collects the material of several courses at the graduate level given by the authors, avoiding detailed proofs in exchange for numerous illustrations and examples. Apart from common subjects in this field, a lot of attention is given to questions of physical measurement and stochastic properties of chaotic dynamical systems.


Chaos: Concepts, Control and Constructive Use

Chaos: Concepts, Control and Constructive Use

Author: Yurii Bolotin

Publisher: Springer

Published: 2016-10-24

Total Pages: 281

ISBN-13: 3319424963

DOWNLOAD EBOOK

This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interfaces of quantum physics and dynamical systems, examining in turn statistical properties of energy spectra, quantum ratchets, and dynamical tunneling, among others. This text is particularly suitable for non-specialist scientists, engineers, and applied mathematical scientists from related areas, wishing to enter the field quickly and efficiently. From the reviews of the first edition: This book is an excellent introduction to the key concepts and control of chaos in (random) dynamical systems [...] The authors find an outstanding balance between main physical ideas and mathematical terminology to reach their audience in an impressive and lucid manner. This book is ideal for anybody who would like to grasp quickly the main issues related to chaos in discrete and continuous time. Henri Schurz, Zentralblatt MATH, Vol. 1178, 2010.


Book Synopsis Chaos: Concepts, Control and Constructive Use by : Yurii Bolotin

Download or read book Chaos: Concepts, Control and Constructive Use written by Yurii Bolotin and published by Springer. This book was released on 2016-10-24 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interfaces of quantum physics and dynamical systems, examining in turn statistical properties of energy spectra, quantum ratchets, and dynamical tunneling, among others. This text is particularly suitable for non-specialist scientists, engineers, and applied mathematical scientists from related areas, wishing to enter the field quickly and efficiently. From the reviews of the first edition: This book is an excellent introduction to the key concepts and control of chaos in (random) dynamical systems [...] The authors find an outstanding balance between main physical ideas and mathematical terminology to reach their audience in an impressive and lucid manner. This book is ideal for anybody who would like to grasp quickly the main issues related to chaos in discrete and continuous time. Henri Schurz, Zentralblatt MATH, Vol. 1178, 2010.


Nonlinear Dynamics and Chaotic Phenomena

Nonlinear Dynamics and Chaotic Phenomena

Author: B.K Shivamoggi

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 415

ISBN-13: 9401724423

DOWNLOAD EBOOK

FolJowing the formulation of the laws of mechanics by Newton, Lagrange sought to clarify and emphasize their geometrical character. Poincare and Liapunov successfuIJy developed analytical mechanics further along these lines. In this approach, one represents the evolution of all possible states (positions and momenta) by the flow in phase space, or more efficiently, by mappings on manifolds with a symplectic geometry, and tries to understand qualitative features of this problem, rather than solving it explicitly. One important outcome of this line of inquiry is the discovery that vastly different physical systems can actually be abstracted to a few universal forms, like Mandelbrot's fractal and Smale's horse-shoe map, even though the underlying processes are not completely understood. This, of course, implies that much of the observed diversity is only apparent and arises from different ways of looking at the same system. Thus, modern nonlinear dynamics 1 is very much akin to classical thermodynamics in that the ideas and results appear to be applicable to vastly different physical systems. Chaos theory, which occupies a central place in modem nonlinear dynamics, refers to a deterministic development with chaotic outcome. Computers have contributed considerably to progress in chaos theory via impressive complex graphics. However, this approach lacks organization and therefore does not afford complete insight into the underlying complex dynamical behavior. This dynamical behavior mandates concepts and methods from such areas of mathematics and physics as nonlinear differential equations, bifurcation theory, Hamiltonian dynamics, number theory, topology, fractals, and others.


Book Synopsis Nonlinear Dynamics and Chaotic Phenomena by : B.K Shivamoggi

Download or read book Nonlinear Dynamics and Chaotic Phenomena written by B.K Shivamoggi and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: FolJowing the formulation of the laws of mechanics by Newton, Lagrange sought to clarify and emphasize their geometrical character. Poincare and Liapunov successfuIJy developed analytical mechanics further along these lines. In this approach, one represents the evolution of all possible states (positions and momenta) by the flow in phase space, or more efficiently, by mappings on manifolds with a symplectic geometry, and tries to understand qualitative features of this problem, rather than solving it explicitly. One important outcome of this line of inquiry is the discovery that vastly different physical systems can actually be abstracted to a few universal forms, like Mandelbrot's fractal and Smale's horse-shoe map, even though the underlying processes are not completely understood. This, of course, implies that much of the observed diversity is only apparent and arises from different ways of looking at the same system. Thus, modern nonlinear dynamics 1 is very much akin to classical thermodynamics in that the ideas and results appear to be applicable to vastly different physical systems. Chaos theory, which occupies a central place in modem nonlinear dynamics, refers to a deterministic development with chaotic outcome. Computers have contributed considerably to progress in chaos theory via impressive complex graphics. However, this approach lacks organization and therefore does not afford complete insight into the underlying complex dynamical behavior. This dynamical behavior mandates concepts and methods from such areas of mathematics and physics as nonlinear differential equations, bifurcation theory, Hamiltonian dynamics, number theory, topology, fractals, and others.


Nonlinear Dynamics New Directions

Nonlinear Dynamics New Directions

Author: Hernán González-Aguilar

Publisher: Springer

Published: 2015-03-09

Total Pages: 223

ISBN-13: 3319098675

DOWNLOAD EBOOK

This book, along with its companion volume, Nonlinear Dynamics New Directions: Models and Applications, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Presents a rigorous treatment of fluctuations in dynamical systems and explores a range of topics in fractal analysis, among other fundamental topics · Features recent developments on large deviations for higher-dimensional maps, a study of measures resisting multifractal analysis and a overview of complex Kleninan groups · Includes thorough review of recent findings that emphasize new development prospects


Book Synopsis Nonlinear Dynamics New Directions by : Hernán González-Aguilar

Download or read book Nonlinear Dynamics New Directions written by Hernán González-Aguilar and published by Springer. This book was released on 2015-03-09 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, along with its companion volume, Nonlinear Dynamics New Directions: Models and Applications, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Presents a rigorous treatment of fluctuations in dynamical systems and explores a range of topics in fractal analysis, among other fundamental topics · Features recent developments on large deviations for higher-dimensional maps, a study of measures resisting multifractal analysis and a overview of complex Kleninan groups · Includes thorough review of recent findings that emphasize new development prospects


Modern Theory of Dynamical Systems: A Tribute to Dmitry Victorovich Anosov

Modern Theory of Dynamical Systems: A Tribute to Dmitry Victorovich Anosov

Author: Anatole Katok

Publisher: American Mathematical Soc.

Published: 2017-06-19

Total Pages: 320

ISBN-13: 1470425602

DOWNLOAD EBOOK

This volume is a tribute to one of the founders of modern theory of dynamical systems, the late Dmitry Victorovich Anosov. It contains both original papers and surveys, written by some distinguished experts in dynamics, which are related to important themes of Anosov's work, as well as broadly interpreted further crucial developments in the theory of dynamical systems that followed Anosov's original work. Also included is an article by A. Katok that presents Anosov's scientific biography and a picture of the early development of hyperbolicity theory in its various incarnations, complete and partial, uniform and nonuniform.


Book Synopsis Modern Theory of Dynamical Systems: A Tribute to Dmitry Victorovich Anosov by : Anatole Katok

Download or read book Modern Theory of Dynamical Systems: A Tribute to Dmitry Victorovich Anosov written by Anatole Katok and published by American Mathematical Soc.. This book was released on 2017-06-19 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a tribute to one of the founders of modern theory of dynamical systems, the late Dmitry Victorovich Anosov. It contains both original papers and surveys, written by some distinguished experts in dynamics, which are related to important themes of Anosov's work, as well as broadly interpreted further crucial developments in the theory of dynamical systems that followed Anosov's original work. Also included is an article by A. Katok that presents Anosov's scientific biography and a picture of the early development of hyperbolicity theory in its various incarnations, complete and partial, uniform and nonuniform.


Patterns of Dynamics

Patterns of Dynamics

Author: Pavel Gurevich

Publisher: Springer

Published: 2018-02-07

Total Pages: 408

ISBN-13: 3319641735

DOWNLOAD EBOOK

Theoretical advances in dynamical-systems theory and their applications to pattern-forming processes in the sciences and engineering are discussed in this volume that resulted from the conference Patterns in Dynamics held in honor of Bernold Fiedler, in Berlin, July 25-29, 2016.The contributions build and develop mathematical techniques, and use mathematical approaches for prediction and control of complex systems. The underlying mathematical theories help extract structures from experimental observations and, conversely, shed light on the formation, dynamics, and control of spatio-temporal patterns in applications. Theoretical areas covered include geometric analysis, spatial dynamics, spectral theory, traveling-wave theory, and topological data analysis; also discussed are their applications to chemotaxis, self-organization at interfaces, neuroscience, and transport processes.


Book Synopsis Patterns of Dynamics by : Pavel Gurevich

Download or read book Patterns of Dynamics written by Pavel Gurevich and published by Springer. This book was released on 2018-02-07 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical advances in dynamical-systems theory and their applications to pattern-forming processes in the sciences and engineering are discussed in this volume that resulted from the conference Patterns in Dynamics held in honor of Bernold Fiedler, in Berlin, July 25-29, 2016.The contributions build and develop mathematical techniques, and use mathematical approaches for prediction and control of complex systems. The underlying mathematical theories help extract structures from experimental observations and, conversely, shed light on the formation, dynamics, and control of spatio-temporal patterns in applications. Theoretical areas covered include geometric analysis, spatial dynamics, spectral theory, traveling-wave theory, and topological data analysis; also discussed are their applications to chemotaxis, self-organization at interfaces, neuroscience, and transport processes.


From Nucleons to Nucleus

From Nucleons to Nucleus

Author: Jouni Suhonen

Publisher: Springer Science & Business Media

Published: 2007-04-22

Total Pages: 655

ISBN-13: 3540488618

DOWNLOAD EBOOK

From Nucleons to Nucleus deals with single-particle and collective features of spherical nuclei. Each nuclear model is introduced and derived in detail. The formalism is then applied to light and medium-heavy nuclei in worked-out examples, and finally the acquired skills are strengthened by a wide selection of exercises, many relating the models to experimental data. Nuclear properties are discussed using particles, holes and quasi-particles. From Nucleons to Nucleus is based on lectures on nuclear physics given by the author, and serves well as a textbook for advanced students. Researchers too will appreciate it as a well-balanced reference to theoretical nuclear physics.


Book Synopsis From Nucleons to Nucleus by : Jouni Suhonen

Download or read book From Nucleons to Nucleus written by Jouni Suhonen and published by Springer Science & Business Media. This book was released on 2007-04-22 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: From Nucleons to Nucleus deals with single-particle and collective features of spherical nuclei. Each nuclear model is introduced and derived in detail. The formalism is then applied to light and medium-heavy nuclei in worked-out examples, and finally the acquired skills are strengthened by a wide selection of exercises, many relating the models to experimental data. Nuclear properties are discussed using particles, holes and quasi-particles. From Nucleons to Nucleus is based on lectures on nuclear physics given by the author, and serves well as a textbook for advanced students. Researchers too will appreciate it as a well-balanced reference to theoretical nuclear physics.


Chaos

Chaos

Author: Angelo Vulpiani

Publisher: World Scientific

Published: 2010

Total Pages: 482

ISBN-13: 9814277665

DOWNLOAD EBOOK

Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.


Book Synopsis Chaos by : Angelo Vulpiani

Download or read book Chaos written by Angelo Vulpiani and published by World Scientific. This book was released on 2010 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.


Chaotic Dynamics

Chaotic Dynamics

Author: Gregory L. Baker

Publisher: Cambridge University Press

Published: 1996

Total Pages: 282

ISBN-13: 9780521471060

DOWNLOAD EBOOK

The previous edition of this text was the first to provide a quantitative introduction to chaos and nonlinear dynamics at the undergraduate level. It was widely praised for the clarity of writing and for the unique and effective way in which the authors presented the basic ideas. These same qualities characterize this revised and expanded second edition. Interest in chaotic dynamics has grown explosively in recent years. Applications to practically every scientific field have had a far-reaching impact. As in the first edition, the authors present all the main features of chaotic dynamics using the damped, driven pendulum as the primary model. This second edition includes additional material on the analysis and characterization of chaotic data, and applications of chaos. This new edition of Chaotic Dynamics can be used as a text for courses on chaos for physics and engineering students at the second- and third-year level.


Book Synopsis Chaotic Dynamics by : Gregory L. Baker

Download or read book Chaotic Dynamics written by Gregory L. Baker and published by Cambridge University Press. This book was released on 1996 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: The previous edition of this text was the first to provide a quantitative introduction to chaos and nonlinear dynamics at the undergraduate level. It was widely praised for the clarity of writing and for the unique and effective way in which the authors presented the basic ideas. These same qualities characterize this revised and expanded second edition. Interest in chaotic dynamics has grown explosively in recent years. Applications to practically every scientific field have had a far-reaching impact. As in the first edition, the authors present all the main features of chaotic dynamics using the damped, driven pendulum as the primary model. This second edition includes additional material on the analysis and characterization of chaotic data, and applications of chaos. This new edition of Chaotic Dynamics can be used as a text for courses on chaos for physics and engineering students at the second- and third-year level.


Safety and Reliability. Theory and Applications

Safety and Reliability. Theory and Applications

Author: Marko Cepin

Publisher: CRC Press

Published: 2017-06-14

Total Pages: 540

ISBN-13: 1351809725

DOWNLOAD EBOOK

Safety and Reliability – Theory and Applications contains the contributions presented at the 27th European Safety and Reliability Conference (ESREL 2017, Portorož, Slovenia, June 18-22, 2017). The book covers a wide range of topics, including: • Accident and Incident modelling • Economic Analysis in Risk Management • Foundational Issues in Risk Assessment and Management • Human Factors and Human Reliability • Maintenance Modeling and Applications • Mathematical Methods in Reliability and Safety • Prognostics and System Health Management • Resilience Engineering • Risk Assessment • Risk Management • Simulation for Safety and Reliability Analysis • Structural Reliability • System Reliability, and • Uncertainty Analysis. Selected special sessions include contributions on: the Marie Skłodowska-Curie innovative training network in structural safety; risk approaches in insurance and fi nance sectors; dynamic reliability and probabilistic safety assessment; Bayesian and statistical methods, reliability data and testing; oganizational factors and safety culture; software reliability and safety; probabilistic methods applied to power systems; socio-technical-economic systems; advanced safety assessment methodologies: extended Probabilistic Safety Assessment; reliability; availability; maintainability and safety in railways: theory & practice; big data risk analysis and management, and model-based reliability and safety engineering. Safety and Reliability – Theory and Applications will be of interest to professionals and academics working in a wide range of industrial and governmental sectors including: Aeronautics and Aerospace, Automotive Engineering, Civil Engineering, Electrical and Electronic Engineering, Energy Production and Distribution, Environmental Engineering, Information Technology and Telecommunications, Critical Infrastructures, Insurance and Finance, Manufacturing, Marine Industry, Mechanical Engineering, Natural Hazards, Nuclear Engineering, Offshore Oil and Gas, Security and Protection, Transportation, and Policy Making.


Book Synopsis Safety and Reliability. Theory and Applications by : Marko Cepin

Download or read book Safety and Reliability. Theory and Applications written by Marko Cepin and published by CRC Press. This book was released on 2017-06-14 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safety and Reliability – Theory and Applications contains the contributions presented at the 27th European Safety and Reliability Conference (ESREL 2017, Portorož, Slovenia, June 18-22, 2017). The book covers a wide range of topics, including: • Accident and Incident modelling • Economic Analysis in Risk Management • Foundational Issues in Risk Assessment and Management • Human Factors and Human Reliability • Maintenance Modeling and Applications • Mathematical Methods in Reliability and Safety • Prognostics and System Health Management • Resilience Engineering • Risk Assessment • Risk Management • Simulation for Safety and Reliability Analysis • Structural Reliability • System Reliability, and • Uncertainty Analysis. Selected special sessions include contributions on: the Marie Skłodowska-Curie innovative training network in structural safety; risk approaches in insurance and fi nance sectors; dynamic reliability and probabilistic safety assessment; Bayesian and statistical methods, reliability data and testing; oganizational factors and safety culture; software reliability and safety; probabilistic methods applied to power systems; socio-technical-economic systems; advanced safety assessment methodologies: extended Probabilistic Safety Assessment; reliability; availability; maintainability and safety in railways: theory & practice; big data risk analysis and management, and model-based reliability and safety engineering. Safety and Reliability – Theory and Applications will be of interest to professionals and academics working in a wide range of industrial and governmental sectors including: Aeronautics and Aerospace, Automotive Engineering, Civil Engineering, Electrical and Electronic Engineering, Energy Production and Distribution, Environmental Engineering, Information Technology and Telecommunications, Critical Infrastructures, Insurance and Finance, Manufacturing, Marine Industry, Mechanical Engineering, Natural Hazards, Nuclear Engineering, Offshore Oil and Gas, Security and Protection, Transportation, and Policy Making.