Continuous Issues in Numerical Cognition

Continuous Issues in Numerical Cognition

Author: Avishai Henik

Publisher: Academic Press

Published: 2016-05-18

Total Pages: 458

ISBN-13: 0128017937

DOWNLOAD EBOOK

Continuous Issues in Numerical Cognition: How Many or How Much re-examines the widely accepted view that there exists a core numerical system within human beings and an innate ability to perceive and count discrete quantities. This core knowledge involves the brain’s intraparietal sulcus, and a deficiency in this region has traditionally been thought to be the basis for arithmetic disability. However, new research findings suggest this wide agreement needs to be examined carefully and that perception of sizes and other non-countable amounts may be the true precursors of numerical ability. This cutting-edge book examines the possibility that perception and evaluation of non-countable dimensions may be involved in the development of numerical cognition. Discussions of the above and related issues are important for the achievement of a comprehensive understanding of numerical cognition, its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. Serves as an innovative reference on the emerging field of numerical cognition and the branches that converge on this diverse topic Features chapters from leading researchers in the field Includes an overview of the multiple disciplines that comprise numerical cognition and discusses the measures that can be used in analysis Introduces novel ideas that connect non-countable continuous variables to numerical cognition


Book Synopsis Continuous Issues in Numerical Cognition by : Avishai Henik

Download or read book Continuous Issues in Numerical Cognition written by Avishai Henik and published by Academic Press. This book was released on 2016-05-18 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuous Issues in Numerical Cognition: How Many or How Much re-examines the widely accepted view that there exists a core numerical system within human beings and an innate ability to perceive and count discrete quantities. This core knowledge involves the brain’s intraparietal sulcus, and a deficiency in this region has traditionally been thought to be the basis for arithmetic disability. However, new research findings suggest this wide agreement needs to be examined carefully and that perception of sizes and other non-countable amounts may be the true precursors of numerical ability. This cutting-edge book examines the possibility that perception and evaluation of non-countable dimensions may be involved in the development of numerical cognition. Discussions of the above and related issues are important for the achievement of a comprehensive understanding of numerical cognition, its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. Serves as an innovative reference on the emerging field of numerical cognition and the branches that converge on this diverse topic Features chapters from leading researchers in the field Includes an overview of the multiple disciplines that comprise numerical cognition and discusses the measures that can be used in analysis Introduces novel ideas that connect non-countable continuous variables to numerical cognition


Dual-Process Theories of Numerical Cognition

Dual-Process Theories of Numerical Cognition

Author: Mario Graziano

Publisher: Springer

Published: 2018-08-12

Total Pages: 147

ISBN-13: 3319967975

DOWNLOAD EBOOK

This book presents a philosophical interpretation to numerical cognition based on dual process theories and heuristics. It shows how investigations in cognitive science can shed light on issues traditionally raised by philosophers of mathematics. The analysis will also help readers to better understand the relationship between current neuroscientific research and the philosophical reflection on mathematics. The author seeks to explain the acquisition of mathematical concepts. To accomplish this, he needs to answer two questions. How can the concepts of approximate numerosity become an object of thought that is so accessible to our consciousness? How are these concepts refined and specified in such a way as to become numbers? Unfortunately, there is currently no model that can truly demonstrate the role of language in the development of numerical skills starting from approximate pre-verbal skills. However, the author details a solution to this problem: dual process theories. It is an approach widely used by theorists focusing on reasoning, decision making, social cognition, and consciousness. Here, he applies this approach to the studies on mathematical knowledge. He details the results brought about by psychological and neuroscientific studies conducted on numerical cognition by key neuroscientists. In the process, he develops the foundations of a new, potential philosophical explanation on mathematical knowledge.


Book Synopsis Dual-Process Theories of Numerical Cognition by : Mario Graziano

Download or read book Dual-Process Theories of Numerical Cognition written by Mario Graziano and published by Springer. This book was released on 2018-08-12 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a philosophical interpretation to numerical cognition based on dual process theories and heuristics. It shows how investigations in cognitive science can shed light on issues traditionally raised by philosophers of mathematics. The analysis will also help readers to better understand the relationship between current neuroscientific research and the philosophical reflection on mathematics. The author seeks to explain the acquisition of mathematical concepts. To accomplish this, he needs to answer two questions. How can the concepts of approximate numerosity become an object of thought that is so accessible to our consciousness? How are these concepts refined and specified in such a way as to become numbers? Unfortunately, there is currently no model that can truly demonstrate the role of language in the development of numerical skills starting from approximate pre-verbal skills. However, the author details a solution to this problem: dual process theories. It is an approach widely used by theorists focusing on reasoning, decision making, social cognition, and consciousness. Here, he applies this approach to the studies on mathematical knowledge. He details the results brought about by psychological and neuroscientific studies conducted on numerical cognition by key neuroscientists. In the process, he develops the foundations of a new, potential philosophical explanation on mathematical knowledge.


Numerical Development - From cognitive functions to neural underpinnings

Numerical Development - From cognitive functions to neural underpinnings

Author: Korbinian Moeller

Publisher: Frontiers Media SA

Published: 2015-02-24

Total Pages: 282

ISBN-13: 2889194248

DOWNLOAD EBOOK

Living at the beginning of the 21st century requires being numerate, because numerical abilities are not only essential for life prospects of individuals but also for economic interests of post-industrial knowledge societies. Thus, numerical development is at the core of both individual as well as societal interests. There is the notion that we are already born with a very basic ability to deal with small numerosities. Yet, this often called “number sense” seems to be very restricted, approximate, and driven by perceptual constraints. During our numerical development in formal (e.g., school) but also informal contexts (e.g., family, street) we acquire culturally developed abstract symbol systems to represent exact numerosities – in particular number words and Arabic digits – refining our numerical capabilities. In recent years, numerical development has gained increasing research interest documented in a growing number of behavioural, neuro-scientific, educational, cross-cultural, and neuropsychological studies addressing this issue. Additionally, our understanding of how numerical competencies develop has also benefitted considerably from the advent of different neuro-imaging techniques allowing for an evaluation of developmental changes in the human brain. In sum, we are now starting to put together a more and more coherent picture of how numerical competencies develop and how this development is associated with neural changes as well. In the end, this knowledge might also lead to a better understanding of the reasons for atypical numerical development which often has grieve consequences for those who suffer from developmental dyscalculia or mathematics learning disabilities. Therefore, this Research Topic deals with all aspects of numerical development: findings from behavioural performance to underlying neural substrates, from cross-sectional to longitudinal evaluations, from healthy to clinical populations. To this end, we included empirical contributions using different experimental methodologies, but also theoretical contributions, review articles, or opinion papers.


Book Synopsis Numerical Development - From cognitive functions to neural underpinnings by : Korbinian Moeller

Download or read book Numerical Development - From cognitive functions to neural underpinnings written by Korbinian Moeller and published by Frontiers Media SA. This book was released on 2015-02-24 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Living at the beginning of the 21st century requires being numerate, because numerical abilities are not only essential for life prospects of individuals but also for economic interests of post-industrial knowledge societies. Thus, numerical development is at the core of both individual as well as societal interests. There is the notion that we are already born with a very basic ability to deal with small numerosities. Yet, this often called “number sense” seems to be very restricted, approximate, and driven by perceptual constraints. During our numerical development in formal (e.g., school) but also informal contexts (e.g., family, street) we acquire culturally developed abstract symbol systems to represent exact numerosities – in particular number words and Arabic digits – refining our numerical capabilities. In recent years, numerical development has gained increasing research interest documented in a growing number of behavioural, neuro-scientific, educational, cross-cultural, and neuropsychological studies addressing this issue. Additionally, our understanding of how numerical competencies develop has also benefitted considerably from the advent of different neuro-imaging techniques allowing for an evaluation of developmental changes in the human brain. In sum, we are now starting to put together a more and more coherent picture of how numerical competencies develop and how this development is associated with neural changes as well. In the end, this knowledge might also lead to a better understanding of the reasons for atypical numerical development which often has grieve consequences for those who suffer from developmental dyscalculia or mathematics learning disabilities. Therefore, this Research Topic deals with all aspects of numerical development: findings from behavioural performance to underlying neural substrates, from cross-sectional to longitudinal evaluations, from healthy to clinical populations. To this end, we included empirical contributions using different experimental methodologies, but also theoretical contributions, review articles, or opinion papers.


Number without language: comparative psychology and the evolution of numerical cognition

Number without language: comparative psychology and the evolution of numerical cognition

Author: Christian Agrillo

Publisher: Frontiers E-books

Published: 2013-07-09

Total Pages: 135

ISBN-13: 2889191435

DOWNLOAD EBOOK

Despite once being reserved as perhaps a unique human ability, and one reliant on language, comparative and developmental research has shown that numerical abilities predate verbal language. Human infants and several non-human species have been shown to represent numerical information in varied contexts, and the capacity to discriminate both small and large numerosities has been reported in mammals, birds, amphibians, and fish. The similar performances often observed across such diverse species have led to the hypothesis that there may be shared core systems underlying number abilities of non-human species and human non-verbal numerical abilities. Thus, animal models could provide useful insight on our comprehension of numerical cognition, and in particular the evolution of non-verbal numerical abilities. Several aspects need be clarified. For instance the ontogeny of numerical competence in animals has been rarely investigated. It is unclear whether all species can represent numerical information or, on the contrary, use non-numerical continuous quantities that co-vary with number (such as cumulative surface area, density and space). In addition, the existence of a specific mechanism to process small numbers (<4), traditionally called ‘subitizing’, is highly debated. Neuro-anatomical correlates of numerical competence need also to be clarified, as well as brain lateralization of non-verbal numerical abilities. We solicit contributions in a variety of formats, from empirical research reports, to methodological, review and opinion papers that can advance our understanding on the topic. We particularly invite papers exploring the following issues: 1. Do non-human numerical abilities improve in precision across development as observed in human infants? 2. Can animals discriminate between quantities by using numerical information only? Is number a ‘last resort’ strategy adopted when no other continuous quantity is available? 3. To what extent do animals show similar numerical abilities? Do they show evidence of a subitizing-like process? 4. What kinds of things can be represented numerically by animals? What evidence is there for cross-modal numerical judgments, or judgments of sub-sets of stimuli, or perhaps even counting-like behavior in non-human species? 5. Do comparative studies help us to shed light on the neuro-anatomical correlates of number? By bringing together different studies on these issues we aim to contribute to a more complete picture of numerical competence in the absence of language.


Book Synopsis Number without language: comparative psychology and the evolution of numerical cognition by : Christian Agrillo

Download or read book Number without language: comparative psychology and the evolution of numerical cognition written by Christian Agrillo and published by Frontiers E-books. This book was released on 2013-07-09 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite once being reserved as perhaps a unique human ability, and one reliant on language, comparative and developmental research has shown that numerical abilities predate verbal language. Human infants and several non-human species have been shown to represent numerical information in varied contexts, and the capacity to discriminate both small and large numerosities has been reported in mammals, birds, amphibians, and fish. The similar performances often observed across such diverse species have led to the hypothesis that there may be shared core systems underlying number abilities of non-human species and human non-verbal numerical abilities. Thus, animal models could provide useful insight on our comprehension of numerical cognition, and in particular the evolution of non-verbal numerical abilities. Several aspects need be clarified. For instance the ontogeny of numerical competence in animals has been rarely investigated. It is unclear whether all species can represent numerical information or, on the contrary, use non-numerical continuous quantities that co-vary with number (such as cumulative surface area, density and space). In addition, the existence of a specific mechanism to process small numbers (<4), traditionally called ‘subitizing’, is highly debated. Neuro-anatomical correlates of numerical competence need also to be clarified, as well as brain lateralization of non-verbal numerical abilities. We solicit contributions in a variety of formats, from empirical research reports, to methodological, review and opinion papers that can advance our understanding on the topic. We particularly invite papers exploring the following issues: 1. Do non-human numerical abilities improve in precision across development as observed in human infants? 2. Can animals discriminate between quantities by using numerical information only? Is number a ‘last resort’ strategy adopted when no other continuous quantity is available? 3. To what extent do animals show similar numerical abilities? Do they show evidence of a subitizing-like process? 4. What kinds of things can be represented numerically by animals? What evidence is there for cross-modal numerical judgments, or judgments of sub-sets of stimuli, or perhaps even counting-like behavior in non-human species? 5. Do comparative studies help us to shed light on the neuro-anatomical correlates of number? By bringing together different studies on these issues we aim to contribute to a more complete picture of numerical competence in the absence of language.


Numerical Cognition and the Epistemology of Arithmetic

Numerical Cognition and the Epistemology of Arithmetic

Author: Markus Pantsar

Publisher: Cambridge University Press

Published: 2024-03-31

Total Pages: 265

ISBN-13: 100946888X

DOWNLOAD EBOOK

The first book-length philosophical account of arithmetical knowledge that is based on the state-of-the-art empirical studies of numerical cognition.


Book Synopsis Numerical Cognition and the Epistemology of Arithmetic by : Markus Pantsar

Download or read book Numerical Cognition and the Epistemology of Arithmetic written by Markus Pantsar and published by Cambridge University Press. This book was released on 2024-03-31 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book-length philosophical account of arithmetical knowledge that is based on the state-of-the-art empirical studies of numerical cognition.


Oxford Handbook of Numerical Cognition

Oxford Handbook of Numerical Cognition

Author: Roi Cohen Kadosh

Publisher: Oxford University Press

Published: 2015-07-30

Total Pages: 1515

ISBN-13: 0191036013

DOWNLOAD EBOOK

How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.


Book Synopsis Oxford Handbook of Numerical Cognition by : Roi Cohen Kadosh

Download or read book Oxford Handbook of Numerical Cognition written by Roi Cohen Kadosh and published by Oxford University Press. This book was released on 2015-07-30 with total page 1515 pages. Available in PDF, EPUB and Kindle. Book excerpt: How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.


Heterogeneous Contributions to Numerical Cognition

Heterogeneous Contributions to Numerical Cognition

Author: Wim Fias

Publisher: Academic Press

Published: 2021-05-28

Total Pages: 422

ISBN-13: 0128174153

DOWNLOAD EBOOK

Arithmetic disability stems from deficits in neurodevelopment, with great individual differences in development or function of an individual at neuroanatomical, neuropsychological, behavioral, and interactional levels. Heterogeneous Contributions to Numerical Cognition: Learning and Education in Mathematical Cognition examines research in mathematical education methods and their neurodevelopmental basis, focusing on the underlying neurodevelopmental features that must be taken into account when teaching and learning mathematics. Cognitive domains and functions such as executive functions, memory, attention, and language contribute to numerical cognition and are essential for its proper development. These lines of research and thinking in neuroscience are discussed in this book to further the understanding of the neurodevelopmental and cognitive basis of more complex forms of mathematics – and how to best teach them. By unravelling the basic building blocks of numerical thinking and the developmental basis of human capacity for arithmetic, this book and the discussions within are important for the achievement of a comprehensive understanding of numerical cognition, its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. A novel innovative reference on the emerging field of numerical cognition and neurodevelopment underlying mathematical education Includes an overview of the multiple disciplines that comprise numerical cognition written by world-leading researchers in the numerical cognition and neurodevelopment fields Features an innovative organization with each section providing a general overview, developmental research, neurocognitive mechanisms, and discussion about relevant studies


Book Synopsis Heterogeneous Contributions to Numerical Cognition by : Wim Fias

Download or read book Heterogeneous Contributions to Numerical Cognition written by Wim Fias and published by Academic Press. This book was released on 2021-05-28 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arithmetic disability stems from deficits in neurodevelopment, with great individual differences in development or function of an individual at neuroanatomical, neuropsychological, behavioral, and interactional levels. Heterogeneous Contributions to Numerical Cognition: Learning and Education in Mathematical Cognition examines research in mathematical education methods and their neurodevelopmental basis, focusing on the underlying neurodevelopmental features that must be taken into account when teaching and learning mathematics. Cognitive domains and functions such as executive functions, memory, attention, and language contribute to numerical cognition and are essential for its proper development. These lines of research and thinking in neuroscience are discussed in this book to further the understanding of the neurodevelopmental and cognitive basis of more complex forms of mathematics – and how to best teach them. By unravelling the basic building blocks of numerical thinking and the developmental basis of human capacity for arithmetic, this book and the discussions within are important for the achievement of a comprehensive understanding of numerical cognition, its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. A novel innovative reference on the emerging field of numerical cognition and neurodevelopment underlying mathematical education Includes an overview of the multiple disciplines that comprise numerical cognition written by world-leading researchers in the numerical cognition and neurodevelopment fields Features an innovative organization with each section providing a general overview, developmental research, neurocognitive mechanisms, and discussion about relevant studies


Numerical Cognition

Numerical Cognition

Author: Stanislas Dehaene

Publisher: Wiley-Blackwell

Published: 1993-01-01

Total Pages: 209

ISBN-13: 9781557864444

DOWNLOAD EBOOK

What computations do our brains perform when we complete a simple addition task such as adding two and three to make five? How do numerical abilities develop through infancy? Is language a prerequisite for numeracy, or can animals as well as human beings calculate with numbers? Ever since Plato, the mental representation of number and the psychological and neurobiological bases of mathematical abilities in general have been the focus of philosophical and scientific speculation. Recently, new methods in cognitive and developmental psychology, neuropsychology, and animal behavior research have permitted the experimental exploration of old questions. Numerical Cognition constitutes the first comprehensive and up-to-date overview of an emerging field, and points out future directions for researchers to take. An introductory chapter offers an overview of the problem and then focuses on the critical relationship between number and language and on evidence for nonlinguistic representations of number. Subsequent chapters trace the fascinating parallels between human and animal representations of number, probe the meanings of the disintegration of numerical abilities following brain damage, and analyze unusual forms of visuo-spatial number representations first discovered by Sir John Galton more than a century ago. The editor and authors of Numerical Cognition have performed a signal service for students and researchers in cognitive science, neuropsychology, and mathematics, indeed, for everyone interested in the nature of mathematics and its relation to mind and brain.


Book Synopsis Numerical Cognition by : Stanislas Dehaene

Download or read book Numerical Cognition written by Stanislas Dehaene and published by Wiley-Blackwell. This book was released on 1993-01-01 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: What computations do our brains perform when we complete a simple addition task such as adding two and three to make five? How do numerical abilities develop through infancy? Is language a prerequisite for numeracy, or can animals as well as human beings calculate with numbers? Ever since Plato, the mental representation of number and the psychological and neurobiological bases of mathematical abilities in general have been the focus of philosophical and scientific speculation. Recently, new methods in cognitive and developmental psychology, neuropsychology, and animal behavior research have permitted the experimental exploration of old questions. Numerical Cognition constitutes the first comprehensive and up-to-date overview of an emerging field, and points out future directions for researchers to take. An introductory chapter offers an overview of the problem and then focuses on the critical relationship between number and language and on evidence for nonlinguistic representations of number. Subsequent chapters trace the fascinating parallels between human and animal representations of number, probe the meanings of the disintegration of numerical abilities following brain damage, and analyze unusual forms of visuo-spatial number representations first discovered by Sir John Galton more than a century ago. The editor and authors of Numerical Cognition have performed a signal service for students and researchers in cognitive science, neuropsychology, and mathematics, indeed, for everyone interested in the nature of mathematics and its relation to mind and brain.


Special Issue: Atypical Development of Numerical Cognition

Special Issue: Atypical Development of Numerical Cognition

Author: Beate Sodian

Publisher:

Published: 2009

Total Pages: 155

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Special Issue: Atypical Development of Numerical Cognition by : Beate Sodian

Download or read book Special Issue: Atypical Development of Numerical Cognition written by Beate Sodian and published by . This book was released on 2009 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Heterogeneity of Function in Numerical Cognition

Heterogeneity of Function in Numerical Cognition

Author: Avishai Henik

Publisher: Academic Press

Published: 2018-05-17

Total Pages: 480

ISBN-13: 0128115300

DOWNLOAD EBOOK

Heterogeneity of Function in Numerical Cognition presents the latest updates on ongoing research and discussions regarding numerical cognition. With great individual differences in the development or function of numerical cognition at neuroanatomical, neuropsychological, behavioral, and interactional levels, these issues are important for the achievement of a comprehensive understanding of numerical cognition, hence its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. These functions are essential for the proper development of numerical cognition. Provides an innovative reference on the emerging field of numerical cognition and the branches that converge on this diverse cognitive domain Includes an overview of the multiple disciplines that comprise numerical cognition Focuses on factors that influence numerical cognition, such as language, executive attention, memory and spatial processing Features an innovative organization with each section providing a general overview, developmental research, and evidence from neurocognitive studies


Book Synopsis Heterogeneity of Function in Numerical Cognition by : Avishai Henik

Download or read book Heterogeneity of Function in Numerical Cognition written by Avishai Henik and published by Academic Press. This book was released on 2018-05-17 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterogeneity of Function in Numerical Cognition presents the latest updates on ongoing research and discussions regarding numerical cognition. With great individual differences in the development or function of numerical cognition at neuroanatomical, neuropsychological, behavioral, and interactional levels, these issues are important for the achievement of a comprehensive understanding of numerical cognition, hence its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. These functions are essential for the proper development of numerical cognition. Provides an innovative reference on the emerging field of numerical cognition and the branches that converge on this diverse cognitive domain Includes an overview of the multiple disciplines that comprise numerical cognition Focuses on factors that influence numerical cognition, such as language, executive attention, memory and spatial processing Features an innovative organization with each section providing a general overview, developmental research, and evidence from neurocognitive studies