Continuous Time Dynamical Systems

Continuous Time Dynamical Systems

Author: B.M. Mohan

Publisher: CRC Press

Published: 2012-10-24

Total Pages: 250

ISBN-13: 1466517298

DOWNLOAD EBOOK

Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. An optimal control is a set of differential equations describing the paths of the control variables that minimize the cost functional. This book, Continuous Time Dynamical Systems: State Estimation and Optimal Control with Orthogonal Functions, considers different classes of systems with quadratic performance criteria. It then attempts to find the optimal control law for each class of systems using orthogonal functions that can optimize the given performance criteria. Illustrated throughout with detailed examples, the book covers topics including: Block-pulse functions and shifted Legendre polynomials State estimation of linear time-invariant systems Linear optimal control systems incorporating observers Optimal control of systems described by integro-differential equations Linear-quadratic-Gaussian control Optimal control of singular systems Optimal control of time-delay systems with and without reverse time terms Optimal control of second-order nonlinear systems Hierarchical control of linear time-invariant and time-varying systems


Book Synopsis Continuous Time Dynamical Systems by : B.M. Mohan

Download or read book Continuous Time Dynamical Systems written by B.M. Mohan and published by CRC Press. This book was released on 2012-10-24 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. An optimal control is a set of differential equations describing the paths of the control variables that minimize the cost functional. This book, Continuous Time Dynamical Systems: State Estimation and Optimal Control with Orthogonal Functions, considers different classes of systems with quadratic performance criteria. It then attempts to find the optimal control law for each class of systems using orthogonal functions that can optimize the given performance criteria. Illustrated throughout with detailed examples, the book covers topics including: Block-pulse functions and shifted Legendre polynomials State estimation of linear time-invariant systems Linear optimal control systems incorporating observers Optimal control of systems described by integro-differential equations Linear-quadratic-Gaussian control Optimal control of singular systems Optimal control of time-delay systems with and without reverse time terms Optimal control of second-order nonlinear systems Hierarchical control of linear time-invariant and time-varying systems


An Introduction to Dynamical Systems

An Introduction to Dynamical Systems

Author: Rex Clark Robinson

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 763

ISBN-13: 0821891359

DOWNLOAD EBOOK

This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.


Book Synopsis An Introduction to Dynamical Systems by : Rex Clark Robinson

Download or read book An Introduction to Dynamical Systems written by Rex Clark Robinson and published by American Mathematical Soc.. This book was released on 2012 with total page 763 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 532

ISBN-13: 0429961111

DOWNLOAD EBOOK

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


Book Synopsis Nonlinear Dynamics and Chaos by : Steven H. Strogatz

Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


Mathematical Modeling

Mathematical Modeling

Author: Mark M. Meerschaert

Publisher: Elsevier

Published: 2007-06-18

Total Pages: 360

ISBN-13: 9780123708571

DOWNLOAD EBOOK

Mathematical Modeling, Third Edition is a general introduction to an increasingly crucial topic for today's mathematicians. Unlike textbooks focused on one kind of mathematical model, this book covers the broad spectrum of modeling problems, from optimization to dynamical systems to stochastic processes. Mathematical modeling is the link between mathematics and the rest of the world. Meerschaert shows how to refine a question, phrasing it in precise mathematical terms. Then he encourages students to reverse the process, translating the mathematical solution back into a comprehensible, useful answer to the original question. This textbook mirrors the process professionals must follow in solving complex problems. Each chapter in this book is followed by a set of challenging exercises. These exercises require significant effort on the part of the student, as well as a certain amount of creativity. Meerschaert did not invent the problems in this book--they are real problems, not designed to illustrate the use of any particular mathematical technique. Meerschaert's emphasis on principles and general techniques offers students the mathematical background they need to model problems in a wide range of disciplines. Increased support for instructors, including MATLAB material New sections on time series analysis and diffusion models Additional problems with international focus such as whale and dolphin populations, plus updated optimization problems


Book Synopsis Mathematical Modeling by : Mark M. Meerschaert

Download or read book Mathematical Modeling written by Mark M. Meerschaert and published by Elsevier. This book was released on 2007-06-18 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling, Third Edition is a general introduction to an increasingly crucial topic for today's mathematicians. Unlike textbooks focused on one kind of mathematical model, this book covers the broad spectrum of modeling problems, from optimization to dynamical systems to stochastic processes. Mathematical modeling is the link between mathematics and the rest of the world. Meerschaert shows how to refine a question, phrasing it in precise mathematical terms. Then he encourages students to reverse the process, translating the mathematical solution back into a comprehensible, useful answer to the original question. This textbook mirrors the process professionals must follow in solving complex problems. Each chapter in this book is followed by a set of challenging exercises. These exercises require significant effort on the part of the student, as well as a certain amount of creativity. Meerschaert did not invent the problems in this book--they are real problems, not designed to illustrate the use of any particular mathematical technique. Meerschaert's emphasis on principles and general techniques offers students the mathematical background they need to model problems in a wide range of disciplines. Increased support for instructors, including MATLAB material New sections on time series analysis and diffusion models Additional problems with international focus such as whale and dolphin populations, plus updated optimization problems


Stability of Dynamical Systems

Stability of Dynamical Systems

Author:

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 516

ISBN-13: 0817644865

DOWNLOAD EBOOK

In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.


Book Synopsis Stability of Dynamical Systems by :

Download or read book Stability of Dynamical Systems written by and published by Springer Science & Business Media. This book was released on 2008 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.


Continuous-Time Markov Jump Linear Systems

Continuous-Time Markov Jump Linear Systems

Author: Oswaldo Luiz do Valle Costa

Publisher: Springer Science & Business Media

Published: 2012-12-18

Total Pages: 295

ISBN-13: 3642341004

DOWNLOAD EBOOK

It has been widely recognized nowadays the importance of introducing mathematical models that take into account possible sudden changes in the dynamical behavior of a high-integrity systems or a safety-critical system. Such systems can be found in aircraft control, nuclear power stations, robotic manipulator systems, integrated communication networks and large-scale flexible structures for space stations, and are inherently vulnerable to abrupt changes in their structures caused by component or interconnection failures. In this regard, a particularly interesting class of models is the so-called Markov jump linear systems (MJLS), which have been used in numerous applications including robotics, economics and wireless communication. Combining probability and operator theory, the present volume provides a unified and rigorous treatment of recent results in control theory of continuous-time MJLS. This unique approach is of great interest to experts working in the field of linear systems with Markovian jump parameters or in stochastic control. The volume focuses on one of the few cases of stochastic control problems with an actual explicit solution and offers material well-suited to coursework, introducing students to an interesting and active research area. The book is addressed to researchers working in control and signal processing engineering. Prerequisites include a solid background in classical linear control theory, basic familiarity with continuous-time Markov chains and probability theory, and some elementary knowledge of operator theory. ​


Book Synopsis Continuous-Time Markov Jump Linear Systems by : Oswaldo Luiz do Valle Costa

Download or read book Continuous-Time Markov Jump Linear Systems written by Oswaldo Luiz do Valle Costa and published by Springer Science & Business Media. This book was released on 2012-12-18 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has been widely recognized nowadays the importance of introducing mathematical models that take into account possible sudden changes in the dynamical behavior of a high-integrity systems or a safety-critical system. Such systems can be found in aircraft control, nuclear power stations, robotic manipulator systems, integrated communication networks and large-scale flexible structures for space stations, and are inherently vulnerable to abrupt changes in their structures caused by component or interconnection failures. In this regard, a particularly interesting class of models is the so-called Markov jump linear systems (MJLS), which have been used in numerous applications including robotics, economics and wireless communication. Combining probability and operator theory, the present volume provides a unified and rigorous treatment of recent results in control theory of continuous-time MJLS. This unique approach is of great interest to experts working in the field of linear systems with Markovian jump parameters or in stochastic control. The volume focuses on one of the few cases of stochastic control problems with an actual explicit solution and offers material well-suited to coursework, introducing students to an interesting and active research area. The book is addressed to researchers working in control and signal processing engineering. Prerequisites include a solid background in classical linear control theory, basic familiarity with continuous-time Markov chains and probability theory, and some elementary knowledge of operator theory. ​


Hybrid Dynamical Systems

Hybrid Dynamical Systems

Author: Rafal Goebel

Publisher: Princeton University Press

Published: 2012-03-18

Total Pages: 227

ISBN-13: 1400842638

DOWNLOAD EBOOK

Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.


Book Synopsis Hybrid Dynamical Systems by : Rafal Goebel

Download or read book Hybrid Dynamical Systems written by Rafal Goebel and published by Princeton University Press. This book was released on 2012-03-18 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.


Invitation to Dynamical Systems

Invitation to Dynamical Systems

Author: Edward R. Scheinerman

Publisher: Courier Corporation

Published: 2013-05-13

Total Pages: 408

ISBN-13: 0486275329

DOWNLOAD EBOOK

This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.


Book Synopsis Invitation to Dynamical Systems by : Edward R. Scheinerman

Download or read book Invitation to Dynamical Systems written by Edward R. Scheinerman and published by Courier Corporation. This book was released on 2013-05-13 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.


System Theory of Continuous Time Finite Dimensional Dynamical Systems

System Theory of Continuous Time Finite Dimensional Dynamical Systems

Author: Yasumichi Hasegawa

Publisher: Springer Nature

Published: 2019-09-26

Total Pages: 221

ISBN-13: 3030304809

DOWNLOAD EBOOK

This book discusses the realization and control problems of finite-dimensional dynamical systems which contain linear and nonlinear systems. The author focuses on algebraic methods for the discussion of control problems of linear and non-linear dynamical systems. The book contains detailed examples to showcase the effectiveness of the presented method. The target audience comprises primarily research experts in the field of control theory, but the book may also be beneficial for graduate students alike.


Book Synopsis System Theory of Continuous Time Finite Dimensional Dynamical Systems by : Yasumichi Hasegawa

Download or read book System Theory of Continuous Time Finite Dimensional Dynamical Systems written by Yasumichi Hasegawa and published by Springer Nature. This book was released on 2019-09-26 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the realization and control problems of finite-dimensional dynamical systems which contain linear and nonlinear systems. The author focuses on algebraic methods for the discussion of control problems of linear and non-linear dynamical systems. The book contains detailed examples to showcase the effectiveness of the presented method. The target audience comprises primarily research experts in the field of control theory, but the book may also be beneficial for graduate students alike.


Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems

Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems

Author: Luis Rodrigues

Publisher: SIAM

Published: 2019-11-06

Total Pages: 224

ISBN-13: 1611975905

DOWNLOAD EBOOK

Engineering systems operate through actuators, most of which will exhibit phenomena such as saturation or zones of no operation, commonly known as dead zones. These are examples of piecewise-affine characteristics, and they can have a considerable impact on the stability and performance of engineering systems. This book targets controller design for piecewise affine systems, fulfilling both stability and performance requirements. The authors present a unified computational methodology for the analysis and synthesis of piecewise affine controllers, taking an approach that is capable of handling sliding modes, sampled-data, and networked systems. They introduce algorithms that will be applicable to nonlinear systems approximated by piecewise affine systems, and they feature several examples from areas such as switching electronic circuits, autonomous vehicles, neural networks, and aerospace applications. Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems is intended for graduate students, advanced senior undergraduate students, and researchers in academia and industry. It is also appropriate for engineers working on applications where switched linear and affine models are important.


Book Synopsis Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems by : Luis Rodrigues

Download or read book Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems written by Luis Rodrigues and published by SIAM. This book was released on 2019-11-06 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering systems operate through actuators, most of which will exhibit phenomena such as saturation or zones of no operation, commonly known as dead zones. These are examples of piecewise-affine characteristics, and they can have a considerable impact on the stability and performance of engineering systems. This book targets controller design for piecewise affine systems, fulfilling both stability and performance requirements. The authors present a unified computational methodology for the analysis and synthesis of piecewise affine controllers, taking an approach that is capable of handling sliding modes, sampled-data, and networked systems. They introduce algorithms that will be applicable to nonlinear systems approximated by piecewise affine systems, and they feature several examples from areas such as switching electronic circuits, autonomous vehicles, neural networks, and aerospace applications. Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems is intended for graduate students, advanced senior undergraduate students, and researchers in academia and industry. It is also appropriate for engineers working on applications where switched linear and affine models are important.