Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

Author: Kentaro Ito

Publisher: John Wiley & Sons

Published: 2015-02-23

Total Pages: 449

ISBN-13: 111843787X

DOWNLOAD EBOOK

Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.


Book Synopsis Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells by : Kentaro Ito

Download or read book Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells written by Kentaro Ito and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.


Copper Zinc Tin Sulfide Thin Films for Photovoltaics

Copper Zinc Tin Sulfide Thin Films for Photovoltaics

Author: Jonathan J. Scragg

Publisher: Springer Science & Business Media

Published: 2011-09-01

Total Pages: 220

ISBN-13: 3642229190

DOWNLOAD EBOOK

Jonathan Scragg documents his work on a very promising material suitable for use in solar cells. Copper Zinc Tin Sulfide (CZTS) is a low cost, earth-abundant material suitable for large scale deployment in photovoltaics. Jonathan pioneered and optimized a low cost route to this material involving electroplating of the three metals concerned, followed by rapid thermal processing (RTP) in sulfur vapour. His beautifully detailed RTP studies – combined with techniques such as XRD, EDX and Raman – reveal the complex relationships between composition, processing and photovoltaic performance. This exceptional thesis contributes to the development of clean, sustainable and alternative sources of energy


Book Synopsis Copper Zinc Tin Sulfide Thin Films for Photovoltaics by : Jonathan J. Scragg

Download or read book Copper Zinc Tin Sulfide Thin Films for Photovoltaics written by Jonathan J. Scragg and published by Springer Science & Business Media. This book was released on 2011-09-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Jonathan Scragg documents his work on a very promising material suitable for use in solar cells. Copper Zinc Tin Sulfide (CZTS) is a low cost, earth-abundant material suitable for large scale deployment in photovoltaics. Jonathan pioneered and optimized a low cost route to this material involving electroplating of the three metals concerned, followed by rapid thermal processing (RTP) in sulfur vapour. His beautifully detailed RTP studies – combined with techniques such as XRD, EDX and Raman – reveal the complex relationships between composition, processing and photovoltaic performance. This exceptional thesis contributes to the development of clean, sustainable and alternative sources of energy


Fabrication and Reliability of Copper Zinc Tin Sulfide (CZTS) Thin Film Solar Cells

Fabrication and Reliability of Copper Zinc Tin Sulfide (CZTS) Thin Film Solar Cells

Author: Chien-Yi Peng

Publisher:

Published: 2013

Total Pages: 388

ISBN-13: 9781303747113

DOWNLOAD EBOOK


Book Synopsis Fabrication and Reliability of Copper Zinc Tin Sulfide (CZTS) Thin Film Solar Cells by : Chien-Yi Peng

Download or read book Fabrication and Reliability of Copper Zinc Tin Sulfide (CZTS) Thin Film Solar Cells written by Chien-Yi Peng and published by . This book was released on 2013 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Semiconductor Materials for Solar Photovoltaic Cells

Semiconductor Materials for Solar Photovoltaic Cells

Author: M. Parans Paranthaman

Publisher: Springer

Published: 2015-09-16

Total Pages: 290

ISBN-13: 3319203312

DOWNLOAD EBOOK

This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. · Provides a comprehensive introduction to solar PV cell materials · Reviews current and future status of solar cells with respect to cost and efficiency · Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells · Offers an in-depth account of the semiconductor material strategies and directions for further research · Features detailed tables on the world leaders in efficiency demonstrations · Edited by scientists with experience in both research and industry


Book Synopsis Semiconductor Materials for Solar Photovoltaic Cells by : M. Parans Paranthaman

Download or read book Semiconductor Materials for Solar Photovoltaic Cells written by M. Parans Paranthaman and published by Springer. This book was released on 2015-09-16 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. · Provides a comprehensive introduction to solar PV cell materials · Reviews current and future status of solar cells with respect to cost and efficiency · Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells · Offers an in-depth account of the semiconductor material strategies and directions for further research · Features detailed tables on the world leaders in efficiency demonstrations · Edited by scientists with experience in both research and industry


Final Report

Final Report

Author:

Publisher:

Published: 2012

Total Pages: 27

ISBN-13:

DOWNLOAD EBOOK

This is the final report covering 12 months of this subcontract for research on high-efficiency copper zinc tin sulfide (CZTS)-based thin-film solar cells on flexible metal foil. Each of the first three quarters of the subcontract has been detailed in quarterly reports. In this final report highlights of the first three quarters will be provided and details will be given of the final quarter of the subcontract.


Book Synopsis Final Report by :

Download or read book Final Report written by and published by . This book was released on 2012 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the final report covering 12 months of this subcontract for research on high-efficiency copper zinc tin sulfide (CZTS)-based thin-film solar cells on flexible metal foil. Each of the first three quarters of the subcontract has been detailed in quarterly reports. In this final report highlights of the first three quarters will be provided and details will be given of the final quarter of the subcontract.


Preparation and Characterization of Copper Indium Gallium Diselenide and Copper Zinc Tin Sulfide Powders Used as the Absorber of Thin-film Solar Cells

Preparation and Characterization of Copper Indium Gallium Diselenide and Copper Zinc Tin Sulfide Powders Used as the Absorber of Thin-film Solar Cells

Author: 林詣軒

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Preparation and Characterization of Copper Indium Gallium Diselenide and Copper Zinc Tin Sulfide Powders Used as the Absorber of Thin-film Solar Cells by : 林詣軒

Download or read book Preparation and Characterization of Copper Indium Gallium Diselenide and Copper Zinc Tin Sulfide Powders Used as the Absorber of Thin-film Solar Cells written by 林詣軒 and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Thin Film Solar Cells From Earth Abundant Materials

Thin Film Solar Cells From Earth Abundant Materials

Author: Subba Ramaiah Kodigala

Publisher: Newnes

Published: 2013-11-14

Total Pages: 197

ISBN-13: 0123971829

DOWNLOAD EBOOK

The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. One of the first books exploring how to conduct research on thin film solar cells, including reducing costs Detailed instructions on conducting research


Book Synopsis Thin Film Solar Cells From Earth Abundant Materials by : Subba Ramaiah Kodigala

Download or read book Thin Film Solar Cells From Earth Abundant Materials written by Subba Ramaiah Kodigala and published by Newnes. This book was released on 2013-11-14 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. One of the first books exploring how to conduct research on thin film solar cells, including reducing costs Detailed instructions on conducting research


Thin Film Solar Cells with Earth Abundant Elements

Thin Film Solar Cells with Earth Abundant Elements

Author: Yue Yu

Publisher:

Published: 2017

Total Pages: 146

ISBN-13:

DOWNLOAD EBOOK

The world energy consumption has increased rigorously in recent years due to the rapid economic development and the massive global population expansion. Today the world energy supply relies heavily on fossil fuels, known as non-renewable energy resources, which have limited reserves on Earth and do not form or replenish in a short period of time. Burning fossil fuels not only brings environmental pollutions but also results in carbon dioxide and other greenhouse gases, which are to blame for global warming. Therefore, to build a more sustainable and greener future, we have to develop alternative renewable energy resources. Photovoltaic (PV) cell, also commonly known as solar cell, is a very promising renewable energy technology. Here in this dissertation, we have studied two emerging PV materials with earth abundant elements, i.e. copper zinc tin sulfide (CZTS) and organic-inorganic hybrid halide perovskite. Having earth abundant elements means that the raw materials have rich reserves on Earth and the costs are relatively low. It also means that the materials have the potential capability to be produced in large scales in industry. We first explored two different deposition methods for preparing CZTS thin films. In the first method, the CZTS was fabricated by a solution based method with diethyl sulfoxide (DMSO) as the solvent and the effect of spin speed on the properties of CZTS thin films was studied. The results indicated that a higher spin speed was more favorable for attaining a more densely packed and pinhole-free film while no crystallographic differences were observed. In the second method, CZTS was fabricated using sputtered metal precursors followed by a closed-space sulfurization (CSS) technique, which had high manufacturing compatibility and could be applied in industry. After exploring different sulfurization conditions, including temperatures and time, the champion cell was obtained at 590oC for 30min, with a maximum power conversion efficiency (PCE) of 5.2%. We then explored three different organic-inorganic hybrid halide perovskite materials for solar cell applications. The first perovskite material is methylammonium tin triiodide (MASnI3, bandgap ~1.3 eV). It was fabricated by a hybrid thermal evaporation. The as-deposited MASnI3 thin films exhibit smooth surfaces, uniform coverage across the entire substrate, and strong crystallographic preferred orientation along the 100 direction. Our results demonstrate the potential capability of the hybrid evaporation method for preparing high-quality MASnI3 perovskite thin films which can be used to fabricate efficient lead (Pb)-free perovskite solar cells (PVSCs). The second perovskite material is mixed-cation (formamidinium and cesium) lead iodide (FA0.8Cs0.2PbI3). We find that one of the main factors limiting the PCEs of FA0.8Cs0.2PbI3 PVSCs could be the small grain sizes, which leads to relatively short mean carrier lifetimes. We further find that adding a small amount of lead thiocyanate additive can enlarge the grain size of FA0.8Cs0.2PbI3 perovskite thin films and significantly increase the mean carrier lifetime. As a result, the average PCE of FA0.8Cs0.2PbI3 PVSCs increases from 16.18 ± 0.50 (13.45 ± 0.78)% to 18.16 ± 0.54 (16.86 ± 0.63)% when measured under reverse (forward) voltage scans. The best-performing FA0.8Cs0.2PbI3 PVSC registers a PCE of 19.57 (18.12) % when measured under a reverse (forward) voltage scan. The third perovskite material is FA0.8Cs0.2Pb(I0.7Br0.3)3 (bandgap ~1.75 eV). We find that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of the perovskite thin films while avoiding the undesired excess lead iodide formation. As a result, the average grain size of the FA0.8Cs0.2Pb(I0.7Br0.3)3 perovskite thin films increases from 66 ± 24 nm to 1036 ± 111 nm and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. As a result, the average open-circuit voltage (Voc) of FA0.8Cs0.2Pb(I0.7Br0.3)3 PVSCs increases by 80 (70) mV and the average PCE increases from 13.44 ± 0.48 (11.75 ± 0.34)% to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap (~1.75 eV) PVSC registers a stabilized PCE of 17.18%, demonstrating its suitability for top cell applications in all-perovskite tandem solar cells.


Book Synopsis Thin Film Solar Cells with Earth Abundant Elements by : Yue Yu

Download or read book Thin Film Solar Cells with Earth Abundant Elements written by Yue Yu and published by . This book was released on 2017 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world energy consumption has increased rigorously in recent years due to the rapid economic development and the massive global population expansion. Today the world energy supply relies heavily on fossil fuels, known as non-renewable energy resources, which have limited reserves on Earth and do not form or replenish in a short period of time. Burning fossil fuels not only brings environmental pollutions but also results in carbon dioxide and other greenhouse gases, which are to blame for global warming. Therefore, to build a more sustainable and greener future, we have to develop alternative renewable energy resources. Photovoltaic (PV) cell, also commonly known as solar cell, is a very promising renewable energy technology. Here in this dissertation, we have studied two emerging PV materials with earth abundant elements, i.e. copper zinc tin sulfide (CZTS) and organic-inorganic hybrid halide perovskite. Having earth abundant elements means that the raw materials have rich reserves on Earth and the costs are relatively low. It also means that the materials have the potential capability to be produced in large scales in industry. We first explored two different deposition methods for preparing CZTS thin films. In the first method, the CZTS was fabricated by a solution based method with diethyl sulfoxide (DMSO) as the solvent and the effect of spin speed on the properties of CZTS thin films was studied. The results indicated that a higher spin speed was more favorable for attaining a more densely packed and pinhole-free film while no crystallographic differences were observed. In the second method, CZTS was fabricated using sputtered metal precursors followed by a closed-space sulfurization (CSS) technique, which had high manufacturing compatibility and could be applied in industry. After exploring different sulfurization conditions, including temperatures and time, the champion cell was obtained at 590oC for 30min, with a maximum power conversion efficiency (PCE) of 5.2%. We then explored three different organic-inorganic hybrid halide perovskite materials for solar cell applications. The first perovskite material is methylammonium tin triiodide (MASnI3, bandgap ~1.3 eV). It was fabricated by a hybrid thermal evaporation. The as-deposited MASnI3 thin films exhibit smooth surfaces, uniform coverage across the entire substrate, and strong crystallographic preferred orientation along the 100 direction. Our results demonstrate the potential capability of the hybrid evaporation method for preparing high-quality MASnI3 perovskite thin films which can be used to fabricate efficient lead (Pb)-free perovskite solar cells (PVSCs). The second perovskite material is mixed-cation (formamidinium and cesium) lead iodide (FA0.8Cs0.2PbI3). We find that one of the main factors limiting the PCEs of FA0.8Cs0.2PbI3 PVSCs could be the small grain sizes, which leads to relatively short mean carrier lifetimes. We further find that adding a small amount of lead thiocyanate additive can enlarge the grain size of FA0.8Cs0.2PbI3 perovskite thin films and significantly increase the mean carrier lifetime. As a result, the average PCE of FA0.8Cs0.2PbI3 PVSCs increases from 16.18 ± 0.50 (13.45 ± 0.78)% to 18.16 ± 0.54 (16.86 ± 0.63)% when measured under reverse (forward) voltage scans. The best-performing FA0.8Cs0.2PbI3 PVSC registers a PCE of 19.57 (18.12) % when measured under a reverse (forward) voltage scan. The third perovskite material is FA0.8Cs0.2Pb(I0.7Br0.3)3 (bandgap ~1.75 eV). We find that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of the perovskite thin films while avoiding the undesired excess lead iodide formation. As a result, the average grain size of the FA0.8Cs0.2Pb(I0.7Br0.3)3 perovskite thin films increases from 66 ± 24 nm to 1036 ± 111 nm and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. As a result, the average open-circuit voltage (Voc) of FA0.8Cs0.2Pb(I0.7Br0.3)3 PVSCs increases by 80 (70) mV and the average PCE increases from 13.44 ± 0.48 (11.75 ± 0.34)% to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap (~1.75 eV) PVSC registers a stabilized PCE of 17.18%, demonstrating its suitability for top cell applications in all-perovskite tandem solar cells.


Third Generation Photovoltaic Technology

Third Generation Photovoltaic Technology

Author: Alagarsamy Pandikumar

Publisher: Materials Research Forum LLC

Published: 2024-04-25

Total Pages: 173

ISBN-13: 1644903024

DOWNLOAD EBOOK

Third-generation solar cells (SCs) are built on inorganic nanoparticles, hybrids, or semiconducting organic macromolecules. This book focuses on dye-sensitized solar cells, polymer/organic solar cells, copper/zinc/tin sulfide thin film cells, quantum dot solar cells and perovskite-based solar cells. Specific topics covered include device architecture, interface engineering, characterization, and fabrication techniques such as spin coating, blade coating, slot-die coating, dip coating, meniscus coating, spray coating, ink-jet printing, screen printing and electro deposition. Keywords: Fullerene-Containing Polymers, Light-Sensitive Dye, Organic Solar Cells, Perovskite Film, Quantum Dots, Thin Film Solar Cells.


Book Synopsis Third Generation Photovoltaic Technology by : Alagarsamy Pandikumar

Download or read book Third Generation Photovoltaic Technology written by Alagarsamy Pandikumar and published by Materials Research Forum LLC. This book was released on 2024-04-25 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Third-generation solar cells (SCs) are built on inorganic nanoparticles, hybrids, or semiconducting organic macromolecules. This book focuses on dye-sensitized solar cells, polymer/organic solar cells, copper/zinc/tin sulfide thin film cells, quantum dot solar cells and perovskite-based solar cells. Specific topics covered include device architecture, interface engineering, characterization, and fabrication techniques such as spin coating, blade coating, slot-die coating, dip coating, meniscus coating, spray coating, ink-jet printing, screen printing and electro deposition. Keywords: Fullerene-Containing Polymers, Light-Sensitive Dye, Organic Solar Cells, Perovskite Film, Quantum Dots, Thin Film Solar Cells.


Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil; July 26, 2011 - July 25, 2012

Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil; July 26, 2011 - July 25, 2012

Author:

Publisher:

Published: 2012

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This is the final report covering 12 months of this subcontract for research on high-efficiency copper zinc tin sulfide (CZTS)-based thin-film solar cells on flexible metal foil. Each of the first three quarters of the subcontract has been detailed in quarterly reports. In this final report highlights of the first three quarters will be provided and details will be given of the final quarter ofthe subcontract.


Book Synopsis Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil; July 26, 2011 - July 25, 2012 by :

Download or read book Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil; July 26, 2011 - July 25, 2012 written by and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the final report covering 12 months of this subcontract for research on high-efficiency copper zinc tin sulfide (CZTS)-based thin-film solar cells on flexible metal foil. Each of the first three quarters of the subcontract has been detailed in quarterly reports. In this final report highlights of the first three quarters will be provided and details will be given of the final quarter ofthe subcontract.