Eddy Current Approximation of Maxwell Equations

Eddy Current Approximation of Maxwell Equations

Author: Ana Alonso Rodriguez

Publisher: Springer Science & Business Media

Published: 2010-11-22

Total Pages: 355

ISBN-13: 8847015065

DOWNLOAD EBOOK

This book deals with the mathematical analysis and the numerical approximation of eddy current problems in the time-harmonic case. It takes into account all the most used formulations, placing the problem in a rigorous functional framework.


Book Synopsis Eddy Current Approximation of Maxwell Equations by : Ana Alonso Rodriguez

Download or read book Eddy Current Approximation of Maxwell Equations written by Ana Alonso Rodriguez and published by Springer Science & Business Media. This book was released on 2010-11-22 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the mathematical analysis and the numerical approximation of eddy current problems in the time-harmonic case. It takes into account all the most used formulations, placing the problem in a rigorous functional framework.


Current Approximation of Maxwell Equations

Current Approximation of Maxwell Equations

Author: Ana Alonso Rodr Guez

Publisher:

Published: 2010-06-29

Total Pages: 364

ISBN-13: 9788847015081

DOWNLOAD EBOOK


Book Synopsis Current Approximation of Maxwell Equations by : Ana Alonso Rodr Guez

Download or read book Current Approximation of Maxwell Equations written by Ana Alonso Rodr Guez and published by . This book was released on 2010-06-29 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Maxwell’s Equations

Maxwell’s Equations

Author: Ulrich Langer

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-08

Total Pages: 630

ISBN-13: 3110542692

DOWNLOAD EBOOK

This volume collects longer articles on the analysis and numerics of Maxwell’s equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell’s equations, time-dependent Maxwell’s equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.


Book Synopsis Maxwell’s Equations by : Ulrich Langer

Download or read book Maxwell’s Equations written by Ulrich Langer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-08 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects longer articles on the analysis and numerics of Maxwell’s equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell’s equations, time-dependent Maxwell’s equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.


Computational Science – ICCS 2009

Computational Science – ICCS 2009

Author: Gabrielle Allen

Publisher: Springer

Published: 2009-05-19

Total Pages: 0

ISBN-13: 9783642019692

DOWNLOAD EBOOK

“There is something fascinating about science. One gets such wholesale returns of conjecture out of such a tri?ing investment of fact. ” Mark Twain, Life on the Mississippi The challenges in succeeding with computational science are numerous and deeply a?ect all disciplines. NSF’s 2006 Blue Ribbon Panel of Simulation-Based 1 Engineering Science (SBES) states ‘researchers and educators [agree]: com- tational and simulation engineering sciences are fundamental to the security and welfare of the United States. . . We must overcome di?culties inherent in multiscale modeling, the development of next-generation algorithms, and the design. . . of dynamic data-driven application systems. . . We must determine better ways to integrate data-intensive computing, visualization, and simulation. - portantly,wemustoverhauloureducationalsystemtofostertheinterdisciplinary study. . . The payo?sformeeting these challengesareprofound. ’The International Conference on Computational Science 2009 (ICCS 2009) explored how com- tational sciences are not only advancing the traditional hard science disciplines, but also stretching beyond, with applications in the arts, humanities, media and all aspects of research. This interdisciplinary conference drew academic and industry leaders from a variety of ?elds, including physics, astronomy, mat- matics,music,digitalmedia,biologyandengineering. Theconferencealsohosted computer and computational scientists who are designing and building the - ber infrastructure necessary for next-generation computing. Discussions focused on innovative ways to collaborate and how computational science is changing the future of research. ICCS 2009: ‘Compute. Discover. Innovate. ’ was hosted by the Center for Computation and Technology at Louisiana State University in Baton Rouge.


Book Synopsis Computational Science – ICCS 2009 by : Gabrielle Allen

Download or read book Computational Science – ICCS 2009 written by Gabrielle Allen and published by Springer. This book was released on 2009-05-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: “There is something fascinating about science. One gets such wholesale returns of conjecture out of such a tri?ing investment of fact. ” Mark Twain, Life on the Mississippi The challenges in succeeding with computational science are numerous and deeply a?ect all disciplines. NSF’s 2006 Blue Ribbon Panel of Simulation-Based 1 Engineering Science (SBES) states ‘researchers and educators [agree]: com- tational and simulation engineering sciences are fundamental to the security and welfare of the United States. . . We must overcome di?culties inherent in multiscale modeling, the development of next-generation algorithms, and the design. . . of dynamic data-driven application systems. . . We must determine better ways to integrate data-intensive computing, visualization, and simulation. - portantly,wemustoverhauloureducationalsystemtofostertheinterdisciplinary study. . . The payo?sformeeting these challengesareprofound. ’The International Conference on Computational Science 2009 (ICCS 2009) explored how com- tational sciences are not only advancing the traditional hard science disciplines, but also stretching beyond, with applications in the arts, humanities, media and all aspects of research. This interdisciplinary conference drew academic and industry leaders from a variety of ?elds, including physics, astronomy, mat- matics,music,digitalmedia,biologyandengineering. Theconferencealsohosted computer and computational scientists who are designing and building the - ber infrastructure necessary for next-generation computing. Discussions focused on innovative ways to collaborate and how computational science is changing the future of research. ICCS 2009: ‘Compute. Discover. Innovate. ’ was hosted by the Center for Computation and Technology at Louisiana State University in Baton Rouge.


Maxwell’s Equations

Maxwell’s Equations

Author: Ulrich Langer

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-08

Total Pages: 444

ISBN-13: 3110543613

DOWNLOAD EBOOK

This volume collects longer articles on the analysis and numerics of Maxwell’s equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell’s equations, time-dependent Maxwell’s equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.


Book Synopsis Maxwell’s Equations by : Ulrich Langer

Download or read book Maxwell’s Equations written by Ulrich Langer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-08 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects longer articles on the analysis and numerics of Maxwell’s equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell’s equations, time-dependent Maxwell’s equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.


A Student's Guide to Maxwell's Equations

A Student's Guide to Maxwell's Equations

Author: Daniel Fleisch

Publisher: Cambridge University Press

Published: 2008-01-10

Total Pages: 129

ISBN-13: 1139468472

DOWNLOAD EBOOK

Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.


Book Synopsis A Student's Guide to Maxwell's Equations by : Daniel Fleisch

Download or read book A Student's Guide to Maxwell's Equations written by Daniel Fleisch and published by Cambridge University Press. This book was released on 2008-01-10 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.


Modified Maxwell Equations in Quantum Electrodynamics

Modified Maxwell Equations in Quantum Electrodynamics

Author: Henning F. Harmuth

Publisher: World Scientific

Published: 2001

Total Pages: 313

ISBN-13: 9810247702

DOWNLOAD EBOOK

Divergencies in quantum field theory referred to as ?infinite zero-point energy? have been a problem for 70 years. Renormalization has always been considered an unsatisfactory remedy.In 1985 it was found that Maxwell's equations generally do not have solutions that satisfy the causality law. An additional term for magnetic dipole currents corrected this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just as rotating electric dipoles in a material like barium titanate produce electric dipole currents. Electric dipole currents were always part of Maxwell's equations.This book shows that the correction of Maxwell's equations eliminates the infinite zero-point energy in quantum electrodynamics. In addition, it presents many more new results.


Book Synopsis Modified Maxwell Equations in Quantum Electrodynamics by : Henning F. Harmuth

Download or read book Modified Maxwell Equations in Quantum Electrodynamics written by Henning F. Harmuth and published by World Scientific. This book was released on 2001 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Divergencies in quantum field theory referred to as ?infinite zero-point energy? have been a problem for 70 years. Renormalization has always been considered an unsatisfactory remedy.In 1985 it was found that Maxwell's equations generally do not have solutions that satisfy the causality law. An additional term for magnetic dipole currents corrected this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just as rotating electric dipoles in a material like barium titanate produce electric dipole currents. Electric dipole currents were always part of Maxwell's equations.This book shows that the correction of Maxwell's equations eliminates the infinite zero-point energy in quantum electrodynamics. In addition, it presents many more new results.


Approximations and Numerical Methods for the Solution of Maxwell's Equations

Approximations and Numerical Methods for the Solution of Maxwell's Equations

Author: F. El Dabaghi

Publisher: Oxford University Press, USA

Published: 1998

Total Pages: 416

ISBN-13:

DOWNLOAD EBOOK

This book was written in response to the increasing interest in the high frequency numerical solution of Maxwell's equations. Research activity in this area has been stimulated by requirements for greater precision in radar cross-section calculations, particularly for geometries with lowobservability; however there are also a growing number of applications in bio-electromagnetism and electromagnetic compatibility. It is hoped that these proceedings will be of interest both to specialists in this area as well as to others simply looking for a guide to recent developments.


Book Synopsis Approximations and Numerical Methods for the Solution of Maxwell's Equations by : F. El Dabaghi

Download or read book Approximations and Numerical Methods for the Solution of Maxwell's Equations written by F. El Dabaghi and published by Oxford University Press, USA. This book was released on 1998 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was written in response to the increasing interest in the high frequency numerical solution of Maxwell's equations. Research activity in this area has been stimulated by requirements for greater precision in radar cross-section calculations, particularly for geometries with lowobservability; however there are also a growing number of applications in bio-electromagnetism and electromagnetic compatibility. It is hoped that these proceedings will be of interest both to specialists in this area as well as to others simply looking for a guide to recent developments.


Numerical Approximation of the Magnetoquasistatic Model with Uncertainties

Numerical Approximation of the Magnetoquasistatic Model with Uncertainties

Author: Ulrich Römer

Publisher: Springer

Published: 2016-07-27

Total Pages: 114

ISBN-13: 3319412949

DOWNLOAD EBOOK

This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.


Book Synopsis Numerical Approximation of the Magnetoquasistatic Model with Uncertainties by : Ulrich Römer

Download or read book Numerical Approximation of the Magnetoquasistatic Model with Uncertainties written by Ulrich Römer and published by Springer. This book was released on 2016-07-27 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.


Magnetoencephalography

Magnetoencephalography

Author: Selma Supek

Publisher: Springer

Published: 2014-08-07

Total Pages: 999

ISBN-13: 3642330452

DOWNLOAD EBOOK

Magnetoencephalography (MEG) is an invaluable functional brain imaging technique that provides direct, real-time monitoring of neuronal activity necessary for gaining insight into dynamic cortical networks. Our intentions with this book are to cover the richness and transdisciplinary nature of the MEG field, make it more accessible to newcomers and experienced researchers and to stimulate growth in the MEG area. The book presents a comprehensive overview of MEG basics and the latest developments in methodological, empirical and clinical research, directed toward master and doctoral students, as well as researchers. There are three levels of contributions: 1) tutorials on instrumentation, measurements, modeling, and experimental design; 2) topical reviews providing extensive coverage of relevant research topics; and 3) short contributions on open, challenging issues, future developments and novel applications. The topics range from neuromagnetic measurements, signal processing and source localization techniques to dynamic functional networks underlying perception and cognition in both health and disease. Topical reviews cover, among others: development on SQUID-based and novel sensors, multi-modal integration (low field MRI and MEG; EEG and fMRI), Bayesian approaches to multi-modal integration, direct neuronal imaging, novel noise reduction methods, source-space functional analysis, decoding of brain states, dynamic brain connectivity, sensory-motor integration, MEG studies on perception and cognition, thalamocortical oscillations, fetal and neonatal MEG, pediatric MEG studies, cognitive development, clinical applications of MEG in epilepsy, pre-surgical mapping, stroke, schizophrenia, stuttering, traumatic brain injury, post-traumatic stress disorder, depression, autism, aging and neurodegeneration, MEG applications in cognitive neuropharmacology and an overview of the major open-source analysis tools.


Book Synopsis Magnetoencephalography by : Selma Supek

Download or read book Magnetoencephalography written by Selma Supek and published by Springer. This book was released on 2014-08-07 with total page 999 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetoencephalography (MEG) is an invaluable functional brain imaging technique that provides direct, real-time monitoring of neuronal activity necessary for gaining insight into dynamic cortical networks. Our intentions with this book are to cover the richness and transdisciplinary nature of the MEG field, make it more accessible to newcomers and experienced researchers and to stimulate growth in the MEG area. The book presents a comprehensive overview of MEG basics and the latest developments in methodological, empirical and clinical research, directed toward master and doctoral students, as well as researchers. There are three levels of contributions: 1) tutorials on instrumentation, measurements, modeling, and experimental design; 2) topical reviews providing extensive coverage of relevant research topics; and 3) short contributions on open, challenging issues, future developments and novel applications. The topics range from neuromagnetic measurements, signal processing and source localization techniques to dynamic functional networks underlying perception and cognition in both health and disease. Topical reviews cover, among others: development on SQUID-based and novel sensors, multi-modal integration (low field MRI and MEG; EEG and fMRI), Bayesian approaches to multi-modal integration, direct neuronal imaging, novel noise reduction methods, source-space functional analysis, decoding of brain states, dynamic brain connectivity, sensory-motor integration, MEG studies on perception and cognition, thalamocortical oscillations, fetal and neonatal MEG, pediatric MEG studies, cognitive development, clinical applications of MEG in epilepsy, pre-surgical mapping, stroke, schizophrenia, stuttering, traumatic brain injury, post-traumatic stress disorder, depression, autism, aging and neurodegeneration, MEG applications in cognitive neuropharmacology and an overview of the major open-source analysis tools.