Differential Equations on Fractals

Differential Equations on Fractals

Author: Robert S. Strichartz

Publisher: Princeton University Press

Published: 2006-08-20

Total Pages: 196

ISBN-13: 9780691127316

DOWNLOAD EBOOK

Measure, energy, and metric -- Laplacian -- Spectrum of the laplacian -- Postcritically finite fractals -- Further topics.


Book Synopsis Differential Equations on Fractals by : Robert S. Strichartz

Download or read book Differential Equations on Fractals written by Robert S. Strichartz and published by Princeton University Press. This book was released on 2006-08-20 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measure, energy, and metric -- Laplacian -- Spectrum of the laplacian -- Postcritically finite fractals -- Further topics.


Differential Equations on Fractals

Differential Equations on Fractals

Author: Robert S. Strichartz

Publisher: Princeton University Press

Published: 2018-06-05

Total Pages: 169

ISBN-13: 0691186839

DOWNLOAD EBOOK

Differential Equations on Fractals opens the door to understanding the recently developed area of analysis on fractals, focusing on the construction of a Laplacian on the Sierpinski gasket and related fractals. Written in a lively and informal style, with lots of intriguing exercises on all levels of difficulty, the book is accessible to advanced undergraduates, graduate students, and mathematicians who seek an understanding of analysis on fractals. Robert Strichartz takes the reader to the frontiers of research, starting with carefully motivated examples and constructions. One of the great accomplishments of geometric analysis in the nineteenth and twentieth centuries was the development of the theory of Laplacians on smooth manifolds. But what happens when the underlying space is rough? Fractals provide models of rough spaces that nevertheless have a strong structure, specifically self-similarity. Exploiting this structure, researchers in probability theory in the 1980s were able to prove the existence of Brownian motion, and therefore of a Laplacian, on certain fractals. An explicit analytic construction was provided in 1989 by Jun Kigami. Differential Equations on Fractals explains Kigami's construction, shows why it is natural and important, and unfolds many of the interesting consequences that have recently been discovered. This book can be used as a self-study guide for students interested in fractal analysis, or as a textbook for a special topics course.


Book Synopsis Differential Equations on Fractals by : Robert S. Strichartz

Download or read book Differential Equations on Fractals written by Robert S. Strichartz and published by Princeton University Press. This book was released on 2018-06-05 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations on Fractals opens the door to understanding the recently developed area of analysis on fractals, focusing on the construction of a Laplacian on the Sierpinski gasket and related fractals. Written in a lively and informal style, with lots of intriguing exercises on all levels of difficulty, the book is accessible to advanced undergraduates, graduate students, and mathematicians who seek an understanding of analysis on fractals. Robert Strichartz takes the reader to the frontiers of research, starting with carefully motivated examples and constructions. One of the great accomplishments of geometric analysis in the nineteenth and twentieth centuries was the development of the theory of Laplacians on smooth manifolds. But what happens when the underlying space is rough? Fractals provide models of rough spaces that nevertheless have a strong structure, specifically self-similarity. Exploiting this structure, researchers in probability theory in the 1980s were able to prove the existence of Brownian motion, and therefore of a Laplacian, on certain fractals. An explicit analytic construction was provided in 1989 by Jun Kigami. Differential Equations on Fractals explains Kigami's construction, shows why it is natural and important, and unfolds many of the interesting consequences that have recently been discovered. This book can be used as a self-study guide for students interested in fractal analysis, or as a textbook for a special topics course.


Advanced Numerical and Semi-Analytical Methods for Differential Equations

Advanced Numerical and Semi-Analytical Methods for Differential Equations

Author: Snehashish Chakraverty

Publisher: John Wiley & Sons

Published: 2019-03-20

Total Pages: 256

ISBN-13: 1119423449

DOWNLOAD EBOOK

Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.


Book Synopsis Advanced Numerical and Semi-Analytical Methods for Differential Equations by : Snehashish Chakraverty

Download or read book Advanced Numerical and Semi-Analytical Methods for Differential Equations written by Snehashish Chakraverty and published by John Wiley & Sons. This book was released on 2019-03-20 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.


Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Author: Alexander Grigor'yan

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-01-18

Total Pages: 337

ISBN-13: 3110700859

DOWNLOAD EBOOK

The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.


Book Synopsis Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs by : Alexander Grigor'yan

Download or read book Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs written by Alexander Grigor'yan and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-01-18 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.


Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Author: Alexander Grigor'yan

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-01-18

Total Pages: 526

ISBN-13: 311070076X

DOWNLOAD EBOOK

The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.


Book Synopsis Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs by : Alexander Grigor'yan

Download or read book Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs written by Alexander Grigor'yan and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-01-18 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.


Fractional Dynamics

Fractional Dynamics

Author: Carlo Cattani

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2015-01-01

Total Pages: 392

ISBN-13: 3110472090

DOWNLOAD EBOOK

The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.


Book Synopsis Fractional Dynamics by : Carlo Cattani

Download or read book Fractional Dynamics written by Carlo Cattani and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-01-01 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.


Lectures on Fractal Geometry and Dynamical Systems

Lectures on Fractal Geometry and Dynamical Systems

Author: Ya. B. Pesin

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 334

ISBN-13: 0821848895

DOWNLOAD EBOOK

Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.


Book Synopsis Lectures on Fractal Geometry and Dynamical Systems by : Ya. B. Pesin

Download or read book Lectures on Fractal Geometry and Dynamical Systems written by Ya. B. Pesin and published by American Mathematical Soc.. This book was released on 2009 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.


Fractal-Based Methods in Analysis

Fractal-Based Methods in Analysis

Author: Herb Kunze

Publisher: Springer Science & Business Media

Published: 2011-11-18

Total Pages: 417

ISBN-13: 1461418917

DOWNLOAD EBOOK

The idea of modeling the behaviour of phenomena at multiple scales has become a useful tool in both pure and applied mathematics. Fractal-based techniques lie at the heart of this area, as fractals are inherently multiscale objects; they very often describe nonlinear phenomena better than traditional mathematical models. In many cases they have been used for solving inverse problems arising in models described by systems of differential equations and dynamical systems. "Fractal-Based Methods in Analysis" draws together, for the first time in book form, methods and results from almost twenty years of research in this topic, including new viewpoints and results in many of the chapters. For each topic the theoretical framework is carefully explained using examples and applications. The second chapter on basic iterated function systems theory is designed to be used as the basis for a course and includes many exercises. This chapter, along with the three background appendices on topological and metric spaces, measure theory, and basic results from set-valued analysis, make the book suitable for self-study or as a source book for a graduate course. The other chapters illustrate many extensions and applications of fractal-based methods to different areas. This book is intended for graduate students and researchers in applied mathematics, engineering and social sciences. Herb Kunze is a professor of mathematics at the University of Guelph in Ontario. Davide La Torre is an associate professor of mathematics in the Department of Economics, Management and Quantitative Methods of the University of Milan. Franklin Mendivil is a professor of mathematics at Acadia University in Nova Scotia. Edward Vrscay is a professor in the department of Applied Mathematics at the University of Waterloo in Ontario. The major focus of their research is on fractals and the applications of fractals.


Book Synopsis Fractal-Based Methods in Analysis by : Herb Kunze

Download or read book Fractal-Based Methods in Analysis written by Herb Kunze and published by Springer Science & Business Media. This book was released on 2011-11-18 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of modeling the behaviour of phenomena at multiple scales has become a useful tool in both pure and applied mathematics. Fractal-based techniques lie at the heart of this area, as fractals are inherently multiscale objects; they very often describe nonlinear phenomena better than traditional mathematical models. In many cases they have been used for solving inverse problems arising in models described by systems of differential equations and dynamical systems. "Fractal-Based Methods in Analysis" draws together, for the first time in book form, methods and results from almost twenty years of research in this topic, including new viewpoints and results in many of the chapters. For each topic the theoretical framework is carefully explained using examples and applications. The second chapter on basic iterated function systems theory is designed to be used as the basis for a course and includes many exercises. This chapter, along with the three background appendices on topological and metric spaces, measure theory, and basic results from set-valued analysis, make the book suitable for self-study or as a source book for a graduate course. The other chapters illustrate many extensions and applications of fractal-based methods to different areas. This book is intended for graduate students and researchers in applied mathematics, engineering and social sciences. Herb Kunze is a professor of mathematics at the University of Guelph in Ontario. Davide La Torre is an associate professor of mathematics in the Department of Economics, Management and Quantitative Methods of the University of Milan. Franklin Mendivil is a professor of mathematics at Acadia University in Nova Scotia. Edward Vrscay is a professor in the department of Applied Mathematics at the University of Waterloo in Ontario. The major focus of their research is on fractals and the applications of fractals.


Chaos and Fractals

Chaos and Fractals

Author: David P. Feldman

Publisher: Oxford University Press

Published: 2012-08-10

Total Pages:

ISBN-13: 0191637521

DOWNLOAD EBOOK

This book provides the reader with an elementary introduction to chaos and fractals, suitable for students with a background in elementary algebra, without assuming prior coursework in calculus or physics. It introduces the key phenomena of chaos - aperiodicity, sensitive dependence on initial conditions, bifurcations - via simple iterated functions. Fractals are introduced as self-similar geometric objects and analyzed with the self-similarity and box-counting dimensions. After a brief discussion of power laws, subsequent chapters explore Julia Sets and the Mandelbrot Set. The last part of the book examines two-dimensional dynamical systems, strange attractors, cellular automata, and chaotic differential equations. The book is richly illustrated and includes over 200 end-of-chapter exercises. A flexible format and a clear and succinct writing style make it a good choice for introductory courses in chaos and fractals.


Book Synopsis Chaos and Fractals by : David P. Feldman

Download or read book Chaos and Fractals written by David P. Feldman and published by Oxford University Press. This book was released on 2012-08-10 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with an elementary introduction to chaos and fractals, suitable for students with a background in elementary algebra, without assuming prior coursework in calculus or physics. It introduces the key phenomena of chaos - aperiodicity, sensitive dependence on initial conditions, bifurcations - via simple iterated functions. Fractals are introduced as self-similar geometric objects and analyzed with the self-similarity and box-counting dimensions. After a brief discussion of power laws, subsequent chapters explore Julia Sets and the Mandelbrot Set. The last part of the book examines two-dimensional dynamical systems, strange attractors, cellular automata, and chaotic differential equations. The book is richly illustrated and includes over 200 end-of-chapter exercises. A flexible format and a clear and succinct writing style make it a good choice for introductory courses in chaos and fractals.


Fractals and Fractional Calculus in Continuum Mechanics

Fractals and Fractional Calculus in Continuum Mechanics

Author: Alberto Carpinteri

Publisher: Springer

Published: 2014-05-04

Total Pages: 352

ISBN-13: 3709126649

DOWNLOAD EBOOK

The book is characterized by the illustration of cases of fractal, self-similar and multi-scale structures taken from the mechanics of solid and porous materials, which have a technical interest. In addition, an accessible and self-consistent treatment of the mathematical technique of fractional calculus is provided, avoiding useless complications.


Book Synopsis Fractals and Fractional Calculus in Continuum Mechanics by : Alberto Carpinteri

Download or read book Fractals and Fractional Calculus in Continuum Mechanics written by Alberto Carpinteri and published by Springer. This book was released on 2014-05-04 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is characterized by the illustration of cases of fractal, self-similar and multi-scale structures taken from the mechanics of solid and porous materials, which have a technical interest. In addition, an accessible and self-consistent treatment of the mathematical technique of fractional calculus is provided, avoiding useless complications.