Differential Geometry and Topology of Curves

Differential Geometry and Topology of Curves

Author: Yu Animov

Publisher: CRC Press

Published: 2001-01-11

Total Pages: 218

ISBN-13: 1420022601

DOWNLOAD EBOOK

Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditi


Book Synopsis Differential Geometry and Topology of Curves by : Yu Animov

Download or read book Differential Geometry and Topology of Curves written by Yu Animov and published by CRC Press. This book was released on 2001-01-11 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditi


Differential Geometry and Topology

Differential Geometry and Topology

Author: Keith Burns

Publisher: CRC Press

Published: 2005-05-27

Total Pages: 408

ISBN-13: 9781584882534

DOWNLOAD EBOOK

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.


Book Synopsis Differential Geometry and Topology by : Keith Burns

Download or read book Differential Geometry and Topology written by Keith Burns and published by CRC Press. This book was released on 2005-05-27 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.


A Short Course in Differential Geometry and Topology

A Short Course in Differential Geometry and Topology

Author: A. T. Fomenko

Publisher:

Published: 2009

Total Pages: 292

ISBN-13:

DOWNLOAD EBOOK

This volume is intended for graduate and research students in mathematics and physics. It covers general topology, nonlinear co-ordinate systems, theory of smooth manifolds, theory of curves and surfaces, transformation groupstensor analysis and Riemannian geometry theory of intogration and homologies, fundamental groups and variational principles in Riemannian geometry. The text is presented in a form that is easily accessible to students and is supplemented by a large number of examples, problems, drawings and appendices.


Book Synopsis A Short Course in Differential Geometry and Topology by : A. T. Fomenko

Download or read book A Short Course in Differential Geometry and Topology written by A. T. Fomenko and published by . This book was released on 2009 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is intended for graduate and research students in mathematics and physics. It covers general topology, nonlinear co-ordinate systems, theory of smooth manifolds, theory of curves and surfaces, transformation groupstensor analysis and Riemannian geometry theory of intogration and homologies, fundamental groups and variational principles in Riemannian geometry. The text is presented in a form that is easily accessible to students and is supplemented by a large number of examples, problems, drawings and appendices.


Differential Geometry and Topology of Curves

Differential Geometry and Topology of Curves

Author: Yu Animov

Publisher: CRC Press

Published: 2001-01-11

Total Pages: 216

ISBN-13: 9789056990916

DOWNLOAD EBOOK

Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.


Book Synopsis Differential Geometry and Topology of Curves by : Yu Animov

Download or read book Differential Geometry and Topology of Curves written by Yu Animov and published by CRC Press. This book was released on 2001-01-11 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.


Curvature and Homology

Curvature and Homology

Author: Samuel I. Goldberg

Publisher: Courier Corporation

Published: 1998-01-01

Total Pages: 417

ISBN-13: 048640207X

DOWNLOAD EBOOK

This systematic and self-contained treatment examines the topology of differentiable manifolds, curvature and homology of Riemannian manifolds, compact Lie groups, complex manifolds, and curvature and homology of Kaehler manifolds. It generalizes the theory of Riemann surfaces to that of Riemannian manifolds. Includes four helpful appendixes. "A valuable survey." — Nature. 1962 edition.


Book Synopsis Curvature and Homology by : Samuel I. Goldberg

Download or read book Curvature and Homology written by Samuel I. Goldberg and published by Courier Corporation. This book was released on 1998-01-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This systematic and self-contained treatment examines the topology of differentiable manifolds, curvature and homology of Riemannian manifolds, compact Lie groups, complex manifolds, and curvature and homology of Kaehler manifolds. It generalizes the theory of Riemann surfaces to that of Riemannian manifolds. Includes four helpful appendixes. "A valuable survey." — Nature. 1962 edition.


Differential Geometry of Curves and Surfaces

Differential Geometry of Curves and Surfaces

Author: Thomas F. Banchoff

Publisher: CRC Press

Published: 2022-08-05

Total Pages: 385

ISBN-13: 1000597725

DOWNLOAD EBOOK

The Third edition has been made more accessible by offering more graduated exercise sets. Also, Maple applets replace the Java used in the previous two editions. There are other books with this title, yet none offer integrated technology to assist students in visualizing the concepts. The use of Maple to build in a visual element, often in three dimensions, creates an opportunity for readers, instructors, and students will find compelling.


Book Synopsis Differential Geometry of Curves and Surfaces by : Thomas F. Banchoff

Download or read book Differential Geometry of Curves and Surfaces written by Thomas F. Banchoff and published by CRC Press. This book was released on 2022-08-05 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Third edition has been made more accessible by offering more graduated exercise sets. Also, Maple applets replace the Java used in the previous two editions. There are other books with this title, yet none offer integrated technology to assist students in visualizing the concepts. The use of Maple to build in a visual element, often in three dimensions, creates an opportunity for readers, instructors, and students will find compelling.


Introduction to Geometry and Topology

Introduction to Geometry and Topology

Author: Werner Ballmann

Publisher: Birkhäuser

Published: 2018-07-18

Total Pages: 169

ISBN-13: 3034809832

DOWNLOAD EBOOK

This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.


Book Synopsis Introduction to Geometry and Topology by : Werner Ballmann

Download or read book Introduction to Geometry and Topology written by Werner Ballmann and published by Birkhäuser. This book was released on 2018-07-18 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.


Geometry, Topology, and Physics

Geometry, Topology, and Physics

Author: Mikio Nakahara

Publisher: CRC Press

Published: 2017-06-29

Total Pages: 0

ISBN-13: 9781138413368

DOWNLOAD EBOOK

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.


Book Synopsis Geometry, Topology, and Physics by : Mikio Nakahara

Download or read book Geometry, Topology, and Physics written by Mikio Nakahara and published by CRC Press. This book was released on 2017-06-29 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.


Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition

Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition

Author: mary Gray

Publisher: CRC Press

Published: 1997-12-29

Total Pages: 1094

ISBN-13: 9780849371646

DOWNLOAD EBOOK

The Second Edition combines a traditional approach with the symbolic manipulation abilities of Mathematica to explain and develop the classical theory of curves and surfaces. You will learn to reproduce and study interesting curves and surfaces - many more than are included in typical texts - using computer methods. By plotting geometric objects and studying the printed result, teachers and students can understand concepts geometrically and see the effect of changes in parameters. Modern Differential Geometry of Curves and Surfaces with Mathematica explains how to define and compute standard geometric functions, for example the curvature of curves, and presents a dialect of Mathematica for constructing new curves and surfaces from old. The book also explores how to apply techniques from analysis. Although the book makes extensive use of Mathematica, readers without access to that program can perform the calculations in the text by hand. While single- and multi-variable calculus, some linear algebra, and a few concepts of point set topology are needed to understand the theory, no computer or Mathematica skills are required to understand the concepts presented in the text. In fact, it serves as an excellent introduction to Mathematica, and includes fully documented programs written for use with Mathematica. Ideal for both classroom use and self-study, Modern Differential Geometry of Curves and Surfaces with Mathematica has been tested extensively in the classroom and used in professional short courses throughout the world.


Book Synopsis Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition by : mary Gray

Download or read book Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition written by mary Gray and published by CRC Press. This book was released on 1997-12-29 with total page 1094 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Second Edition combines a traditional approach with the symbolic manipulation abilities of Mathematica to explain and develop the classical theory of curves and surfaces. You will learn to reproduce and study interesting curves and surfaces - many more than are included in typical texts - using computer methods. By plotting geometric objects and studying the printed result, teachers and students can understand concepts geometrically and see the effect of changes in parameters. Modern Differential Geometry of Curves and Surfaces with Mathematica explains how to define and compute standard geometric functions, for example the curvature of curves, and presents a dialect of Mathematica for constructing new curves and surfaces from old. The book also explores how to apply techniques from analysis. Although the book makes extensive use of Mathematica, readers without access to that program can perform the calculations in the text by hand. While single- and multi-variable calculus, some linear algebra, and a few concepts of point set topology are needed to understand the theory, no computer or Mathematica skills are required to understand the concepts presented in the text. In fact, it serves as an excellent introduction to Mathematica, and includes fully documented programs written for use with Mathematica. Ideal for both classroom use and self-study, Modern Differential Geometry of Curves and Surfaces with Mathematica has been tested extensively in the classroom and used in professional short courses throughout the world.


Differential Geometry

Differential Geometry

Author: Loring W. Tu

Publisher: Springer

Published: 2017-06-01

Total Pages: 358

ISBN-13: 3319550845

DOWNLOAD EBOOK

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.


Book Synopsis Differential Geometry by : Loring W. Tu

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.