Differential Geometry in Physics

Differential Geometry in Physics

Author: Gabriel Lugo

Publisher:

Published: 2021-10-15

Total Pages: 372

ISBN-13: 9781469669243

DOWNLOAD EBOOK

Differential Geometry in Physics is a treatment of the mathematical foundations of the theory of general relativity and gauge theory of quantum fields. The material is intended to help bridge the gap that often exists between theoretical physics and applied mathematics. The approach is to carve an optimal path to learning this challenging field by appealing to the much more accessible theory of curves and surfaces. The transition from classical differential geometry as developed by Gauss, Riemann and other giants, to the modern approach, is facilitated by a very intuitive approach that sacrifices some mathematical rigor for the sake of understanding the physics. The book features numerous examples of beautiful curves and surfaces often reflected in nature, plus more advanced computations of trajectory of particles in black holes. Also embedded in the later chapters is a detailed description of the famous Dirac monopole and instantons. Features of this book: * Chapters 1-4 and chapter 5 comprise the content of a one-semester course taught by the author for many years. * The material in the other chapters has served as the foundation for many master's thesis at University of North Carolina Wilmington for students seeking doctoral degrees. * An open access ebook edition is available at Open UNC (https: //openunc.org) * The book contains over 80 illustrations, including a large array of surfaces related to the theory of soliton waves that does not commonly appear in standard mathematical texts on differential geometry.


Book Synopsis Differential Geometry in Physics by : Gabriel Lugo

Download or read book Differential Geometry in Physics written by Gabriel Lugo and published by . This book was released on 2021-10-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Geometry in Physics is a treatment of the mathematical foundations of the theory of general relativity and gauge theory of quantum fields. The material is intended to help bridge the gap that often exists between theoretical physics and applied mathematics. The approach is to carve an optimal path to learning this challenging field by appealing to the much more accessible theory of curves and surfaces. The transition from classical differential geometry as developed by Gauss, Riemann and other giants, to the modern approach, is facilitated by a very intuitive approach that sacrifices some mathematical rigor for the sake of understanding the physics. The book features numerous examples of beautiful curves and surfaces often reflected in nature, plus more advanced computations of trajectory of particles in black holes. Also embedded in the later chapters is a detailed description of the famous Dirac monopole and instantons. Features of this book: * Chapters 1-4 and chapter 5 comprise the content of a one-semester course taught by the author for many years. * The material in the other chapters has served as the foundation for many master's thesis at University of North Carolina Wilmington for students seeking doctoral degrees. * An open access ebook edition is available at Open UNC (https: //openunc.org) * The book contains over 80 illustrations, including a large array of surfaces related to the theory of soliton waves that does not commonly appear in standard mathematical texts on differential geometry.


Differential Geometry and Mathematical Physics

Differential Geometry and Mathematical Physics

Author: Gerd Rudolph

Publisher: Springer Science & Business Media

Published: 2012-11-09

Total Pages: 766

ISBN-13: 9400753454

DOWNLOAD EBOOK

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.


Book Synopsis Differential Geometry and Mathematical Physics by : Gerd Rudolph

Download or read book Differential Geometry and Mathematical Physics written by Gerd Rudolph and published by Springer Science & Business Media. This book was released on 2012-11-09 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.


The Geometry of Physics

The Geometry of Physics

Author: Theodore Frankel

Publisher: Cambridge University Press

Published: 2011-11-03

Total Pages: 749

ISBN-13: 1139505610

DOWNLOAD EBOOK

This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.


Book Synopsis The Geometry of Physics by : Theodore Frankel

Download or read book The Geometry of Physics written by Theodore Frankel and published by Cambridge University Press. This book was released on 2011-11-03 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.


Modern Differential Geometry for Physicists

Modern Differential Geometry for Physicists

Author: Chris J. Isham

Publisher: Allied Publishers

Published: 2002

Total Pages: 308

ISBN-13: 9788177643169

DOWNLOAD EBOOK


Book Synopsis Modern Differential Geometry for Physicists by : Chris J. Isham

Download or read book Modern Differential Geometry for Physicists written by Chris J. Isham and published by Allied Publishers. This book was released on 2002 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Differential Geometry and Lie Groups for Physicists

Differential Geometry and Lie Groups for Physicists

Author: Marián Fecko

Publisher: Cambridge University Press

Published: 2006-10-12

Total Pages: 11

ISBN-13: 1139458035

DOWNLOAD EBOOK

Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.


Book Synopsis Differential Geometry and Lie Groups for Physicists by : Marián Fecko

Download or read book Differential Geometry and Lie Groups for Physicists written by Marián Fecko and published by Cambridge University Press. This book was released on 2006-10-12 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.


Differential Geometry for Physicists

Differential Geometry for Physicists

Author: Bo-Yu Hou

Publisher: World Scientific Publishing Company

Published: 1997-10-31

Total Pages: 560

ISBN-13: 9813105097

DOWNLOAD EBOOK

This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8–10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.


Book Synopsis Differential Geometry for Physicists by : Bo-Yu Hou

Download or read book Differential Geometry for Physicists written by Bo-Yu Hou and published by World Scientific Publishing Company. This book was released on 1997-10-31 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8–10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.


Differential Geometry, Gauge Theories, and Gravity

Differential Geometry, Gauge Theories, and Gravity

Author: M. Göckeler

Publisher: Cambridge University Press

Published: 1989-07-28

Total Pages: 248

ISBN-13: 9780521378215

DOWNLOAD EBOOK

Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.


Book Synopsis Differential Geometry, Gauge Theories, and Gravity by : M. Göckeler

Download or read book Differential Geometry, Gauge Theories, and Gravity written by M. Göckeler and published by Cambridge University Press. This book was released on 1989-07-28 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.


Topology and Geometry for Physicists

Topology and Geometry for Physicists

Author: Charles Nash

Publisher: Courier Corporation

Published: 2013-08-16

Total Pages: 302

ISBN-13: 0486318362

DOWNLOAD EBOOK

Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.


Book Synopsis Topology and Geometry for Physicists by : Charles Nash

Download or read book Topology and Geometry for Physicists written by Charles Nash and published by Courier Corporation. This book was released on 2013-08-16 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.


Differential Geometry with Applications to Mechanics and Physics

Differential Geometry with Applications to Mechanics and Physics

Author: Yves Talpaert

Publisher: CRC Press

Published: 2000-09-12

Total Pages: 480

ISBN-13: 9780824703851

DOWNLOAD EBOOK

An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.


Book Synopsis Differential Geometry with Applications to Mechanics and Physics by : Yves Talpaert

Download or read book Differential Geometry with Applications to Mechanics and Physics written by Yves Talpaert and published by CRC Press. This book was released on 2000-09-12 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.


Geometry and Physics

Geometry and Physics

Author: Jürgen Jost

Publisher: Springer Science & Business Media

Published: 2009-08-17

Total Pages: 226

ISBN-13: 3642005411

DOWNLOAD EBOOK

"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.


Book Synopsis Geometry and Physics by : Jürgen Jost

Download or read book Geometry and Physics written by Jürgen Jost and published by Springer Science & Business Media. This book was released on 2009-08-17 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.