Diffractive Optics and Nanophotonics

Diffractive Optics and Nanophotonics

Author: V. A. Soifer

Publisher: CRC Press

Published: 2017-09-01

Total Pages: 718

ISBN-13: 1498754481

DOWNLOAD EBOOK

Diffractive Optics and Nanophotonics is devoted to achievements in diffractive optics, focusing on the creation of new nanophotonic components and devices, as well as instrumentation and available information technology. The author describes methods of calculation of diffractive optical elements to solve actual problems of nanophotonics. Coverage includes mathematical methods for calculation of diffraction gratings, calculation of modes of inhomogeneous waveguides, integral methods of calculation of electromagnetic field near the focus, and methods of calculation of diffractive optical elements generating vortex laser beams.


Book Synopsis Diffractive Optics and Nanophotonics by : V. A. Soifer

Download or read book Diffractive Optics and Nanophotonics written by V. A. Soifer and published by CRC Press. This book was released on 2017-09-01 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diffractive Optics and Nanophotonics is devoted to achievements in diffractive optics, focusing on the creation of new nanophotonic components and devices, as well as instrumentation and available information technology. The author describes methods of calculation of diffractive optical elements to solve actual problems of nanophotonics. Coverage includes mathematical methods for calculation of diffraction gratings, calculation of modes of inhomogeneous waveguides, integral methods of calculation of electromagnetic field near the focus, and methods of calculation of diffractive optical elements generating vortex laser beams.


Diffractive Optics and Nanophotonics

Diffractive Optics and Nanophotonics

Author: Igor Minin

Publisher: Springer

Published: 2015-10-29

Total Pages: 65

ISBN-13: 3319242539

DOWNLOAD EBOOK

In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible. With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Terahertz frequencies (terajets) using 3D dielectric particles of arbitrary size (cuboids) is considered. A scheme to create a 2D “teraknife” using dielectric rods is also discussed. In the final chapter the successful adaptation of free-space 3D binary phase-reversal conical FZPs for operation on surface plasmon-polariton (SPP) waves demonstrates that analogues of Fourier diffractive components can be developed for in-plane SPP 3D optics. Review ing theory, modelling and experiment, this book will be a valuable resource for students and researchers working on nanophotonics and sub-wavelength focusing and imaging.


Book Synopsis Diffractive Optics and Nanophotonics by : Igor Minin

Download or read book Diffractive Optics and Nanophotonics written by Igor Minin and published by Springer. This book was released on 2015-10-29 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible. With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Terahertz frequencies (terajets) using 3D dielectric particles of arbitrary size (cuboids) is considered. A scheme to create a 2D “teraknife” using dielectric rods is also discussed. In the final chapter the successful adaptation of free-space 3D binary phase-reversal conical FZPs for operation on surface plasmon-polariton (SPP) waves demonstrates that analogues of Fourier diffractive components can be developed for in-plane SPP 3D optics. Review ing theory, modelling and experiment, this book will be a valuable resource for students and researchers working on nanophotonics and sub-wavelength focusing and imaging.


Applied Digital Optics

Applied Digital Optics

Author: Bernard C. Kress

Publisher: John Wiley & Sons

Published: 2009-11-04

Total Pages: 638

ISBN-13: 9780470022641

DOWNLOAD EBOOK

Miniaturization and mass replications have begun to lead the optical industry in the transition from traditional analog to novel digital optics. As digital optics enter the realm of mainstream technology through the worldwide sale of consumer electronic devices, this timely book aims to present the topic of digital optics in a unified way. Ranging from micro-optics to nanophotonics, and design to fabrication through to integration in final products, it reviews the various physical implementations of digital optics in either micro-refractives, waveguide (planar lightwave chips), diffractive and hybrid optics or sub-wavelength structures (resonant gratings, surface plasmons, photonic crystals and metamaterials). Finally, it presents a comprehensive list of industrial and commercial applications that are taking advantage of the unique properties of digital optics. Applied Digital Optics is aimed primarily at optical engineers and product development and technical marketing managers; it is also of interest to graduate-level photonics students and micro-optic foundries. Helps optical engineers review and choose the appropriate software tools to design, model and generate fabrication files. Gives product managers access to an exhaustive list of applications available in today’s market for integrating such digital optics, as well as where the next potential application of digital optics might be. Provides a broad view for technical marketing managers in all aspects of digital optics, and how such optics can be classified. Explains the numerical implementation of optical design and modelling techniques. Enables micro-optics foundries to integrate the latest fabrication and replication techniques, and accordingly fine tune their own fabrication processes.


Book Synopsis Applied Digital Optics by : Bernard C. Kress

Download or read book Applied Digital Optics written by Bernard C. Kress and published by John Wiley & Sons. This book was released on 2009-11-04 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Miniaturization and mass replications have begun to lead the optical industry in the transition from traditional analog to novel digital optics. As digital optics enter the realm of mainstream technology through the worldwide sale of consumer electronic devices, this timely book aims to present the topic of digital optics in a unified way. Ranging from micro-optics to nanophotonics, and design to fabrication through to integration in final products, it reviews the various physical implementations of digital optics in either micro-refractives, waveguide (planar lightwave chips), diffractive and hybrid optics or sub-wavelength structures (resonant gratings, surface plasmons, photonic crystals and metamaterials). Finally, it presents a comprehensive list of industrial and commercial applications that are taking advantage of the unique properties of digital optics. Applied Digital Optics is aimed primarily at optical engineers and product development and technical marketing managers; it is also of interest to graduate-level photonics students and micro-optic foundries. Helps optical engineers review and choose the appropriate software tools to design, model and generate fabrication files. Gives product managers access to an exhaustive list of applications available in today’s market for integrating such digital optics, as well as where the next potential application of digital optics might be. Provides a broad view for technical marketing managers in all aspects of digital optics, and how such optics can be classified. Explains the numerical implementation of optical design and modelling techniques. Enables micro-optics foundries to integrate the latest fabrication and replication techniques, and accordingly fine tune their own fabrication processes.


Diffractive Nanophotonics

Diffractive Nanophotonics

Author: Victor A Soifer

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 697

ISBN-13: 146659070X

DOWNLOAD EBOOK

Diffractive Nanophotonics demonstrates the utility of the well-established methods of diffractive computer optics in solving nanophotonics tasks. It is concerned with peculiar properties of laser light diffraction by microoptics elements with nanoscale features and light confinement in subwavelength space regions. Written by recognized experts in t


Book Synopsis Diffractive Nanophotonics by : Victor A Soifer

Download or read book Diffractive Nanophotonics written by Victor A Soifer and published by CRC Press. This book was released on 2016-04-19 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diffractive Nanophotonics demonstrates the utility of the well-established methods of diffractive computer optics in solving nanophotonics tasks. It is concerned with peculiar properties of laser light diffraction by microoptics elements with nanoscale features and light confinement in subwavelength space regions. Written by recognized experts in t


Design and Fabrication of Diffractive Optical Elements with MATLAB

Design and Fabrication of Diffractive Optical Elements with MATLAB

Author: Shanti Bhattacharya

Publisher: SPIE-International Society for Optical Engineering

Published: 2017

Total Pages: 276

ISBN-13: 9781510607057

DOWNLOAD EBOOK

"Given the many different applications and uses of diffractive optics, the importance of this field cannot be underestimated. This book supplements the available literature on diffractive optic elements (DOEs) by equipping readers with the skills to begin designing, simulating, and fabricating diffractive optics. The design of DOEs is presented with simple equations and step-by-step procedures for simulation--from the simplest 1D grating to the more complex multifunctional DOEs--and analyzing their diffraction patterns using MATLAB. The fundamentals of fabrication techniques such as photolithography, electron beam lithography, and focused ion beam lithography with basic instructions for the beginner are presented. Basic error analysis and error-correction techniques for a few cases are also discussed. The contents of all the chapters are supported throughout by practical exercises and clearly commented MATLAB® codes (the codes are also on an accompanying CD), making this book useful even to a novice programmer"--


Book Synopsis Design and Fabrication of Diffractive Optical Elements with MATLAB by : Shanti Bhattacharya

Download or read book Design and Fabrication of Diffractive Optical Elements with MATLAB written by Shanti Bhattacharya and published by SPIE-International Society for Optical Engineering. This book was released on 2017 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Given the many different applications and uses of diffractive optics, the importance of this field cannot be underestimated. This book supplements the available literature on diffractive optic elements (DOEs) by equipping readers with the skills to begin designing, simulating, and fabricating diffractive optics. The design of DOEs is presented with simple equations and step-by-step procedures for simulation--from the simplest 1D grating to the more complex multifunctional DOEs--and analyzing their diffraction patterns using MATLAB. The fundamentals of fabrication techniques such as photolithography, electron beam lithography, and focused ion beam lithography with basic instructions for the beginner are presented. Basic error analysis and error-correction techniques for a few cases are also discussed. The contents of all the chapters are supported throughout by practical exercises and clearly commented MATLAB® codes (the codes are also on an accompanying CD), making this book useful even to a novice programmer"--


Near-Field Nano-Optics

Near-Field Nano-Optics

Author: Motoichi Ohtsu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 397

ISBN-13: 1461548357

DOWNLOAD EBOOK

Conventional optical science and technology have been restricted by the diffraction limit from reducing the sizes of optical and photoruc devices to nanometric dimensions. Thus, the size of optical integrated circuits has been incompatible with that of their counterpart, integrated electronic circuits, which have much smaller dimensions. This book provides potential ideas and methods to overcome this difficulty. Near-field optics has developed very rapidly from around the middle 1980s after preliminary trials in the microwave frequency region, as proposed as early as 1928. At the early stages of this development, most technical efforts were devoted to realizing super-high-resolution optical microscopy beyond the diffraction limit. However, the possibility of exploiting the optical near-field, phenomenon of quasistatic electromagnetic interaction at subwavelength distances between nanometric particles has opened new ways to nanometric optical science and technology, and many applications to nanometric fabrication and manipulation have been proposed and implemented. Building on this historical background, this book describes recent progress in near-field optical science and technology, mainly using research of the author's groups. The title of this book, Near-Field Nano-Optics-From Basic Principles to Nano-Fabrication and Nano-Photonics, implies capabilities of the optical near field not only for imaging/microscopy, but also for fabrication/manipulation/proc essing on a nanometric scale.


Book Synopsis Near-Field Nano-Optics by : Motoichi Ohtsu

Download or read book Near-Field Nano-Optics written by Motoichi Ohtsu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conventional optical science and technology have been restricted by the diffraction limit from reducing the sizes of optical and photoruc devices to nanometric dimensions. Thus, the size of optical integrated circuits has been incompatible with that of their counterpart, integrated electronic circuits, which have much smaller dimensions. This book provides potential ideas and methods to overcome this difficulty. Near-field optics has developed very rapidly from around the middle 1980s after preliminary trials in the microwave frequency region, as proposed as early as 1928. At the early stages of this development, most technical efforts were devoted to realizing super-high-resolution optical microscopy beyond the diffraction limit. However, the possibility of exploiting the optical near-field, phenomenon of quasistatic electromagnetic interaction at subwavelength distances between nanometric particles has opened new ways to nanometric optical science and technology, and many applications to nanometric fabrication and manipulation have been proposed and implemented. Building on this historical background, this book describes recent progress in near-field optical science and technology, mainly using research of the author's groups. The title of this book, Near-Field Nano-Optics-From Basic Principles to Nano-Fabrication and Nano-Photonics, implies capabilities of the optical near field not only for imaging/microscopy, but also for fabrication/manipulation/proc essing on a nanometric scale.


Photonics Elements for Sensing and Optical Conversions

Photonics Elements for Sensing and Optical Conversions

Author: Nikolay L. Kazanskiy

Publisher: CRC Press

Published: 2023-12-08

Total Pages: 382

ISBN-13: 1003812724

DOWNLOAD EBOOK

This book covers a number of a rapidly growing areas of knowledge that may be termed as diffractive nanophotonics. It also discusses in detail photonic components that may find uses in sensorics and optical transformations. Photonics Elements for Sensing and Optical Conversions, covers a number of rapidly growing areas of knowledge that may be termed as diffractive nanophotonics. The book examines the advances in computational electrodynamics and nanoelectronics that have made it possible to design and manufacture novel types of photonic components and devices boasting unique properties unattainable in the realm of classical optics. The authors discuss plasmonic sensors, and new types of wavefront sensors and nanolasers that are widely used in telecommunications, quantum informatics and optical transformations. The book also deals with the recent advances in the plasmonic sensors based on metal-insulator-metal waveguides for biochemical sensing applications. Additionally, nanolasers are examined in detail, with a focus on contemporary issues, the book also deals with the fundamentals and highly attractive applications of metamaterials and metasurfaces. The authors provide an insight into sensors based on Zernike optical decomposition using a multi-order diffractive optical element, and explore the performance advances that can be achieved with optical computing. The book is written for opticians, scientists and researchers who are interested in an interesting section of plasmonic sensors, new types of wavefront sensors and nanolasers, and optical transformations. The book will be bought by upper graduate and graduate level students looking to specialize in photonics and optics.


Book Synopsis Photonics Elements for Sensing and Optical Conversions by : Nikolay L. Kazanskiy

Download or read book Photonics Elements for Sensing and Optical Conversions written by Nikolay L. Kazanskiy and published by CRC Press. This book was released on 2023-12-08 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a number of a rapidly growing areas of knowledge that may be termed as diffractive nanophotonics. It also discusses in detail photonic components that may find uses in sensorics and optical transformations. Photonics Elements for Sensing and Optical Conversions, covers a number of rapidly growing areas of knowledge that may be termed as diffractive nanophotonics. The book examines the advances in computational electrodynamics and nanoelectronics that have made it possible to design and manufacture novel types of photonic components and devices boasting unique properties unattainable in the realm of classical optics. The authors discuss plasmonic sensors, and new types of wavefront sensors and nanolasers that are widely used in telecommunications, quantum informatics and optical transformations. The book also deals with the recent advances in the plasmonic sensors based on metal-insulator-metal waveguides for biochemical sensing applications. Additionally, nanolasers are examined in detail, with a focus on contemporary issues, the book also deals with the fundamentals and highly attractive applications of metamaterials and metasurfaces. The authors provide an insight into sensors based on Zernike optical decomposition using a multi-order diffractive optical element, and explore the performance advances that can be achieved with optical computing. The book is written for opticians, scientists and researchers who are interested in an interesting section of plasmonic sensors, new types of wavefront sensors and nanolasers, and optical transformations. The book will be bought by upper graduate and graduate level students looking to specialize in photonics and optics.


Optics of Diffractive and Gradient-index Elements and Systems

Optics of Diffractive and Gradient-index Elements and Systems

Author: Grigoriĭ Isaevich Greĭsukh

Publisher: SPIE Press

Published: 1997

Total Pages: 418

ISBN-13: 9780819424518

DOWNLOAD EBOOK

The use of diffractive and gradient-index (GRIN) lenses as components of imaging optical systems has been investigated for several decades. The elements have proved competitive in their unique focusing and aberration properties and in terms of their additional degrees of freedom for optical design. This book systematically examines the physical principles of diffractive and GRIN elements.


Book Synopsis Optics of Diffractive and Gradient-index Elements and Systems by : Grigoriĭ Isaevich Greĭsukh

Download or read book Optics of Diffractive and Gradient-index Elements and Systems written by Grigoriĭ Isaevich Greĭsukh and published by SPIE Press. This book was released on 1997 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of diffractive and gradient-index (GRIN) lenses as components of imaging optical systems has been investigated for several decades. The elements have proved competitive in their unique focusing and aberration properties and in terms of their additional degrees of freedom for optical design. This book systematically examines the physical principles of diffractive and GRIN elements.


Diffractive Optics and Micro Optics

Diffractive Optics and Micro Optics

Author: Optical Society of America

Publisher:

Published: 1996-06

Total Pages: 388

ISBN-13: 9781557524324

DOWNLOAD EBOOK


Book Synopsis Diffractive Optics and Micro Optics by : Optical Society of America

Download or read book Diffractive Optics and Micro Optics written by Optical Society of America and published by . This book was released on 1996-06 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Introduction to Nanophotonics

Introduction to Nanophotonics

Author: Henri Benisty

Publisher: Oxford University Press

Published: 2022-04-12

Total Pages: 650

ISBN-13: 0191089354

DOWNLOAD EBOOK

The aim of this textbook is to provide an overview of nanophotonics, a discipline which was developed around the turn of the millennium. This unique and rapidly evolving subject area is the result of a collaboration between various scientific communities working on different aspects of light-matter interaction at the nanoscale. These include near-field optics and super-resolution microscopy, photonic crystals, diffractive optics, plasmonics, optoelectronics, synthesis of metallic and semiconductor nanoparticles, two-dimensional materials, and metamaterials. The book is aimed at graduate students with a background in physics, electrical engineering, material science, or chemistry, as well as lecturers and researchers working within these fields.


Book Synopsis Introduction to Nanophotonics by : Henri Benisty

Download or read book Introduction to Nanophotonics written by Henri Benisty and published by Oxford University Press. This book was released on 2022-04-12 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this textbook is to provide an overview of nanophotonics, a discipline which was developed around the turn of the millennium. This unique and rapidly evolving subject area is the result of a collaboration between various scientific communities working on different aspects of light-matter interaction at the nanoscale. These include near-field optics and super-resolution microscopy, photonic crystals, diffractive optics, plasmonics, optoelectronics, synthesis of metallic and semiconductor nanoparticles, two-dimensional materials, and metamaterials. The book is aimed at graduate students with a background in physics, electrical engineering, material science, or chemistry, as well as lecturers and researchers working within these fields.