Dislocation Dynamics and Plasticity

Dislocation Dynamics and Plasticity

Author: Taira Suzuki

Publisher: Springer Science & Business Media

Published: 2013-03-07

Total Pages: 237

ISBN-13: 364275774X

DOWNLOAD EBOOK

In the 1950s the direct observation of dislocations became possible, stimulat ing the interest of many research workers in the dynamics of dislocations. This led to major contributions to the understanding of the plasticity of various crys talline materials. During this time the study of metals and alloys of fcc and hcp structures developed remarkably. In particular, the discovery of the so-called in ertial effect caused by the electron and phonon frictional forces greatly influenced the quantitative understanding of the strength of these metallic materials. Statis tical studies of dislocations moving through random arrays of point obstacles played an important role in the above advances. These topics are described in Chaps. 2-4. Metals and alloys with bcc structure have large Peierls forces compared to those with fcc structure. The reasons for the delay in studying substances with bcc structure were mostly difficulties connected with the purification techniques and with microscopic studies of the dislocation core. In the 1970s, these difficulties were largely overcome by developments in experimental techniques and computer physics. Studies of dislocations in ionic and covalent bonding materials with large Peierls forces provided infonnation about the core structures of dislocations and their electronic interactions with charged particles. These are the main subjects in Chaps. 5-7.


Book Synopsis Dislocation Dynamics and Plasticity by : Taira Suzuki

Download or read book Dislocation Dynamics and Plasticity written by Taira Suzuki and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 1950s the direct observation of dislocations became possible, stimulat ing the interest of many research workers in the dynamics of dislocations. This led to major contributions to the understanding of the plasticity of various crys talline materials. During this time the study of metals and alloys of fcc and hcp structures developed remarkably. In particular, the discovery of the so-called in ertial effect caused by the electron and phonon frictional forces greatly influenced the quantitative understanding of the strength of these metallic materials. Statis tical studies of dislocations moving through random arrays of point obstacles played an important role in the above advances. These topics are described in Chaps. 2-4. Metals and alloys with bcc structure have large Peierls forces compared to those with fcc structure. The reasons for the delay in studying substances with bcc structure were mostly difficulties connected with the purification techniques and with microscopic studies of the dislocation core. In the 1970s, these difficulties were largely overcome by developments in experimental techniques and computer physics. Studies of dislocations in ionic and covalent bonding materials with large Peierls forces provided infonnation about the core structures of dislocations and their electronic interactions with charged particles. These are the main subjects in Chaps. 5-7.


Dislocation Mechanism-Based Crystal Plasticity

Dislocation Mechanism-Based Crystal Plasticity

Author: Zhuo Zhuang

Publisher: Academic Press

Published: 2019-04-12

Total Pages: 450

ISBN-13: 0128145927

DOWNLOAD EBOOK

Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale Presents crystal plasticity theory without size effect Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale


Book Synopsis Dislocation Mechanism-Based Crystal Plasticity by : Zhuo Zhuang

Download or read book Dislocation Mechanism-Based Crystal Plasticity written by Zhuo Zhuang and published by Academic Press. This book was released on 2019-04-12 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale Presents crystal plasticity theory without size effect Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale


Dislocation dynamics

Dislocation dynamics

Author: Alan R. Rosenfield

Publisher:

Published: 1968

Total Pages: 776

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Dislocation dynamics by : Alan R. Rosenfield

Download or read book Dislocation dynamics written by Alan R. Rosenfield and published by . This book was released on 1968 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Dislocation Dynamics

Dislocation Dynamics

Author: Alan R. Rosenfield

Publisher:

Published: 1968

Total Pages: 808

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Dislocation Dynamics by : Alan R. Rosenfield

Download or read book Dislocation Dynamics written by Alan R. Rosenfield and published by . This book was released on 1968 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Dislocations, Mesoscale Simulations and Plastic Flow

Dislocations, Mesoscale Simulations and Plastic Flow

Author: Ladislas Kubin

Publisher: OUP Oxford

Published: 2013-04-18

Total Pages: 320

ISBN-13: 0191664545

DOWNLOAD EBOOK

In the past twenty years, new experimental approaches, improved models and progress in simulation techniques brought new insights into long-standing issues concerning dislocation-based plasticity in crystalline materials. During this period, three-dimensional dislocation dynamics simulations appeared and reached maturity. Their objectives are to unravel the relation between individual and collective dislocation processes at the mesoscale, to establish connections with atom-scale studies of dislocation core properties and to bridge, in combination with modelling, the gap between defect properties and phenomenological continuum models for plastic flow. Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based. It includes classical studies, which are too often ignored, recent experimental and theoretical advances, as well as a discussion of selected applications on various topics.


Book Synopsis Dislocations, Mesoscale Simulations and Plastic Flow by : Ladislas Kubin

Download or read book Dislocations, Mesoscale Simulations and Plastic Flow written by Ladislas Kubin and published by OUP Oxford. This book was released on 2013-04-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past twenty years, new experimental approaches, improved models and progress in simulation techniques brought new insights into long-standing issues concerning dislocation-based plasticity in crystalline materials. During this period, three-dimensional dislocation dynamics simulations appeared and reached maturity. Their objectives are to unravel the relation between individual and collective dislocation processes at the mesoscale, to establish connections with atom-scale studies of dislocation core properties and to bridge, in combination with modelling, the gap between defect properties and phenomenological continuum models for plastic flow. Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based. It includes classical studies, which are too often ignored, recent experimental and theoretical advances, as well as a discussion of selected applications on various topics.


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods

Author: Franz Roters

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 188

ISBN-13: 3527642099

DOWNLOAD EBOOK

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.


Book Synopsis Crystal Plasticity Finite Element Methods by : Franz Roters

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.


Generalized Continua and Dislocation Theory

Generalized Continua and Dislocation Theory

Author: Carlo Sansour

Publisher: Springer Science & Business Media

Published: 2012-05-27

Total Pages: 323

ISBN-13: 3709112222

DOWNLOAD EBOOK

Defects, dislocations and the general theory.- Approaches to generalized continua.- Generalized continuum modelling of crystal plasticity.- Introduction to discrete dislocation dynamics. The book contains four lectures on generalized continua and dislocation theory, reflecting the treatment of the subject at different scales. G. Maugin provides a continuum formulation of defects at the heart of which lies the notion of the material configuration and the material driving forces of in-homogeneities such as dislocations, disclinations, point defects, cracks, phase-transition fronts and shock waves. C. Sansour and S. Skatulla start with a compact treatment of linear transformation groups with subsequent excursion into the continuum theory of generalized continua. After a critical assessment a unified framework of the same is presented. The next contribution by S. Forest gives an account on generalized crystal plasticity. Finally, H. Zbib provides an account of dislocation dynamics and illustrates its fundamental importance at the smallest scale. In three contributions extensive computational results of many examples are presented.


Book Synopsis Generalized Continua and Dislocation Theory by : Carlo Sansour

Download or read book Generalized Continua and Dislocation Theory written by Carlo Sansour and published by Springer Science & Business Media. This book was released on 2012-05-27 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects, dislocations and the general theory.- Approaches to generalized continua.- Generalized continuum modelling of crystal plasticity.- Introduction to discrete dislocation dynamics. The book contains four lectures on generalized continua and dislocation theory, reflecting the treatment of the subject at different scales. G. Maugin provides a continuum formulation of defects at the heart of which lies the notion of the material configuration and the material driving forces of in-homogeneities such as dislocations, disclinations, point defects, cracks, phase-transition fronts and shock waves. C. Sansour and S. Skatulla start with a compact treatment of linear transformation groups with subsequent excursion into the continuum theory of generalized continua. After a critical assessment a unified framework of the same is presented. The next contribution by S. Forest gives an account on generalized crystal plasticity. Finally, H. Zbib provides an account of dislocation dynamics and illustrates its fundamental importance at the smallest scale. In three contributions extensive computational results of many examples are presented.


Dislocation Dynamics Simulations of Plasticity at Small Scales

Dislocation Dynamics Simulations of Plasticity at Small Scales

Author: Caizhi Zhou

Publisher:

Published: 2010

Total Pages: 167

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Dislocation Dynamics Simulations of Plasticity at Small Scales by : Caizhi Zhou

Download or read book Dislocation Dynamics Simulations of Plasticity at Small Scales written by Caizhi Zhou and published by . This book was released on 2010 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Dislocation Dynamics and Plasticity in Micropillars and Thin Films

Dislocation Dynamics and Plasticity in Micropillars and Thin Films

Author: Christopher Robert Weinberger

Publisher:

Published: 2009

Total Pages: 352

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Dislocation Dynamics and Plasticity in Micropillars and Thin Films by : Christopher Robert Weinberger

Download or read book Dislocation Dynamics and Plasticity in Micropillars and Thin Films written by Christopher Robert Weinberger and published by . This book was released on 2009 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics

Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics

Author: Peter Gumbsch

Publisher: Springer Science & Business Media

Published: 2011-01-30

Total Pages: 401

ISBN-13: 3709102839

DOWNLOAD EBOOK

The latest state of simulation techniques to model plasticity and fracture in crystalline materials on the nano- and microscale is presented. Discrete dislocation mechanics and the neighbouring fields molecular dynamics and crystal plasticity are central parts. The physical phenomena, the theoretical basics, their mathematical description and the simulation techniques are introduced and important problems from the formation of dislocation structures to fatigue and fracture from the nano- to microscale as well as it’s impact on the macro behaviour are considered.


Book Synopsis Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics by : Peter Gumbsch

Download or read book Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics written by Peter Gumbsch and published by Springer Science & Business Media. This book was released on 2011-01-30 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest state of simulation techniques to model plasticity and fracture in crystalline materials on the nano- and microscale is presented. Discrete dislocation mechanics and the neighbouring fields molecular dynamics and crystal plasticity are central parts. The physical phenomena, the theoretical basics, their mathematical description and the simulation techniques are introduced and important problems from the formation of dislocation structures to fatigue and fracture from the nano- to microscale as well as it’s impact on the macro behaviour are considered.