Dissipative Solitons in Reaction Diffusion Systems

Dissipative Solitons in Reaction Diffusion Systems

Author: Andreas Liehr

Publisher: Springer Science & Business Media

Published: 2013-03-27

Total Pages: 227

ISBN-13: 3642312519

DOWNLOAD EBOOK

Why writing a book about a specialized task of the large topic of complex systems? And who will read it? The answer is simple: The fascination for a didactically valuable point of view, the elegance of a closed concept and the lack of a comprehensive disquisition. The fascinating part is that field equations can have localized solutions exhibiting the typical characteristics of particles. Regarding the field equations this book focuses on, the field phenomenon of localized solutions can be described in the context of a particle formalism, which leads to a set of ordinary differential equations covering the time evolution of the position and the velocity of each particle. Moreover, starting from these particle dynamics and making the transition to many body systems, one considers typical phenomena of many body systems as shock waves and phase transitions, which themselves can be described as field phenomena. Such transitions between different level of modelling are well known from conservative systems, where localized solutions of quantum field theory lead to the mechanisms of elementary particle interaction and from this to field equations describing the properties of matter. However, in dissipative systems such transitions have not been considered yet, which is adjusted by the presented book. The elegance of a closed concept starts with the observation of self-organized current filaments in a semiconductor gas discharge system. These filaments move on random paths and exhibit certain particle features like scattering or the formation of bound states. Neither the reasons for the propagation of the filaments nor the laws of the interaction between the filaments can be registered by direct observations. Therefore a model is established, which is phenomenological in the first instance due to the complexity of the experimental system. This model allows to understand the existence of localized structures, their mechanisms of movement, and their interaction, at least, on a qualitative level. But this model is also the starting point for developing a data analysis method that enables the detection of movement and interaction mechanisms of the investigated localized solutions. The topic is rounded of by applying the data analysis to real experimental data and comparing the experimental observations to the predictions of the model. A comprehensive publication covering the interesting topic of localized solutions in reaction diffusion systems in its width and its relation to the well known phenomena of spirals and patterns does not yet exist, and this is the third reason for writing this book. Although the book focuses on a specific experimental system the model equations are as simple as possible so that the discussed methods should be adaptable to a large class of systems showing particle-like structures. Therefore, this book should attract not only the experienced scientist, who is interested in self-organization phenomena, but also the student, who would like to understand the investigation of a complex system on the basis of a continuous description.


Book Synopsis Dissipative Solitons in Reaction Diffusion Systems by : Andreas Liehr

Download or read book Dissipative Solitons in Reaction Diffusion Systems written by Andreas Liehr and published by Springer Science & Business Media. This book was released on 2013-03-27 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why writing a book about a specialized task of the large topic of complex systems? And who will read it? The answer is simple: The fascination for a didactically valuable point of view, the elegance of a closed concept and the lack of a comprehensive disquisition. The fascinating part is that field equations can have localized solutions exhibiting the typical characteristics of particles. Regarding the field equations this book focuses on, the field phenomenon of localized solutions can be described in the context of a particle formalism, which leads to a set of ordinary differential equations covering the time evolution of the position and the velocity of each particle. Moreover, starting from these particle dynamics and making the transition to many body systems, one considers typical phenomena of many body systems as shock waves and phase transitions, which themselves can be described as field phenomena. Such transitions between different level of modelling are well known from conservative systems, where localized solutions of quantum field theory lead to the mechanisms of elementary particle interaction and from this to field equations describing the properties of matter. However, in dissipative systems such transitions have not been considered yet, which is adjusted by the presented book. The elegance of a closed concept starts with the observation of self-organized current filaments in a semiconductor gas discharge system. These filaments move on random paths and exhibit certain particle features like scattering or the formation of bound states. Neither the reasons for the propagation of the filaments nor the laws of the interaction between the filaments can be registered by direct observations. Therefore a model is established, which is phenomenological in the first instance due to the complexity of the experimental system. This model allows to understand the existence of localized structures, their mechanisms of movement, and their interaction, at least, on a qualitative level. But this model is also the starting point for developing a data analysis method that enables the detection of movement and interaction mechanisms of the investigated localized solutions. The topic is rounded of by applying the data analysis to real experimental data and comparing the experimental observations to the predictions of the model. A comprehensive publication covering the interesting topic of localized solutions in reaction diffusion systems in its width and its relation to the well known phenomena of spirals and patterns does not yet exist, and this is the third reason for writing this book. Although the book focuses on a specific experimental system the model equations are as simple as possible so that the discussed methods should be adaptable to a large class of systems showing particle-like structures. Therefore, this book should attract not only the experienced scientist, who is interested in self-organization phenomena, but also the student, who would like to understand the investigation of a complex system on the basis of a continuous description.


Dissipative Solitons

Dissipative Solitons

Author: Nail Akhmediev

Publisher: Springer Science & Business Media

Published: 2005-04-25

Total Pages: 472

ISBN-13: 9783540233732

DOWNLOAD EBOOK

This volume is devoted to the exciting topic of dissipative solitons, i.e. pulses or spatially localised waves in systems exhibiting gain and loss. Examples are laser systems, nonlinear resonators and optical transmission lines. The physical principles and mathematical concepts are explained in a clear and concise way, suitable for students and young researchers. The similarities and differences in the notion of a soliton between dissipative systems and Hamiltonian and integrable systems are discussed, and many examples are given. The contributions are written by the world's leading experts in the field, making it a unique exposition of this emerging topic.


Book Synopsis Dissipative Solitons by : Nail Akhmediev

Download or read book Dissipative Solitons written by Nail Akhmediev and published by Springer Science & Business Media. This book was released on 2005-04-25 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is devoted to the exciting topic of dissipative solitons, i.e. pulses or spatially localised waves in systems exhibiting gain and loss. Examples are laser systems, nonlinear resonators and optical transmission lines. The physical principles and mathematical concepts are explained in a clear and concise way, suitable for students and young researchers. The similarities and differences in the notion of a soliton between dissipative systems and Hamiltonian and integrable systems are discussed, and many examples are given. The contributions are written by the world's leading experts in the field, making it a unique exposition of this emerging topic.


Dissipative Solitons: From Optics to Biology and Medicine

Dissipative Solitons: From Optics to Biology and Medicine

Author: Nail Akhmediev

Publisher: Springer Science & Business Media

Published: 2008-08-26

Total Pages: 484

ISBN-13: 3540782168

DOWNLOAD EBOOK

The dissipative soliton concept is a fundamental extension of the concept of solitons in conservative and integrable systems. It includes ideas from three major sources, namely standard soliton theory developed since the 1960s; nonlinear dynamics theory; and Prigogine's ideas of systems far from equilibrium. These three sources also correspond to the three component parts of this novel paradigm. This book explains the above principles in detail and gives the reader various examples.


Book Synopsis Dissipative Solitons: From Optics to Biology and Medicine by : Nail Akhmediev

Download or read book Dissipative Solitons: From Optics to Biology and Medicine written by Nail Akhmediev and published by Springer Science & Business Media. This book was released on 2008-08-26 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dissipative soliton concept is a fundamental extension of the concept of solitons in conservative and integrable systems. It includes ideas from three major sources, namely standard soliton theory developed since the 1960s; nonlinear dynamics theory; and Prigogine's ideas of systems far from equilibrium. These three sources also correspond to the three component parts of this novel paradigm. This book explains the above principles in detail and gives the reader various examples.


High Performance Computing in Science and Engineering ’02

High Performance Computing in Science and Engineering ’02

Author: Egon Krause

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 517

ISBN-13: 3642593542

DOWNLOAD EBOOK

This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.


Book Synopsis High Performance Computing in Science and Engineering ’02 by : Egon Krause

Download or read book High Performance Computing in Science and Engineering ’02 written by Egon Krause and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.


High Performance Computing in Science and Engineering ’03

High Performance Computing in Science and Engineering ’03

Author: Egon Krause

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 478

ISBN-13: 3642558763

DOWNLOAD EBOOK

This book presents the state of the art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2003. The reports cover all fields of computational science and engineering ranging from computational fluid dynamics via computational physics and chemistry to computer science. Special emphasis is given to industrially relevant applications. Presenting results for both vector-systems and micro-processor based systems, the book allows the reader to compare performance levels and usability of a variety of supercomputer architectures. In the light of the success of the Japanese Earth-Simulator, this book may serve as a guide book for a US response. The book covers the main methods in high performance computing. Its outstanding results in achieving highest performance for production codes are of particular interest for both the scientist and the engineer. The book comes with a wealth of color illustrations and tables of results.


Book Synopsis High Performance Computing in Science and Engineering ’03 by : Egon Krause

Download or read book High Performance Computing in Science and Engineering ’03 written by Egon Krause and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state of the art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2003. The reports cover all fields of computational science and engineering ranging from computational fluid dynamics via computational physics and chemistry to computer science. Special emphasis is given to industrially relevant applications. Presenting results for both vector-systems and micro-processor based systems, the book allows the reader to compare performance levels and usability of a variety of supercomputer architectures. In the light of the success of the Japanese Earth-Simulator, this book may serve as a guide book for a US response. The book covers the main methods in high performance computing. Its outstanding results in achieving highest performance for production codes are of particular interest for both the scientist and the engineer. The book comes with a wealth of color illustrations and tables of results.


Dissipative Optical Solitons

Dissipative Optical Solitons

Author: Mário F. S. Ferreira

Publisher: Springer Nature

Published: 2022-09-23

Total Pages: 369

ISBN-13: 3030974936

DOWNLOAD EBOOK

This book introduces the basic concept of a dissipative soliton, before going to explore recent theoretical and experimental results for various classes of dissipative optical solitons, high-energy dissipative solitons and their applications, and mode-locked fiber lasers. A soliton is a concept which describes various physical phenomena ranging from solitary waves forming on water to ultrashort optical pulses propagating in an optical fiber. While solitons are usually attributed to integrability, in recent years the notion of a soliton has been extended to various systems which are not necessarily integrable. Until now, the main emphasis has been given to well-known conservative soliton systems, but new avenues of inquiry were opened when physicists realized that solitary waves did indeed exist in a wide range of non-integrable and non-conservative systems leading to the concept of so-called dissipative optical solitons. Dissipative optical solitons have many unique properties which differ from those of their conservative counterparts. For example, except for very few cases, they form zero-parameter families and their properties are completely determined by the external parameters of the optical system. They can exist indefinitely in time, as long as these parameters stay constant. These features of dissipative solitons are highly desirable for several applications, such as in-line regeneration of optical data streams and generation of stable trains of laser pulses by mode-locked cavities.


Book Synopsis Dissipative Optical Solitons by : Mário F. S. Ferreira

Download or read book Dissipative Optical Solitons written by Mário F. S. Ferreira and published by Springer Nature. This book was released on 2022-09-23 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic concept of a dissipative soliton, before going to explore recent theoretical and experimental results for various classes of dissipative optical solitons, high-energy dissipative solitons and their applications, and mode-locked fiber lasers. A soliton is a concept which describes various physical phenomena ranging from solitary waves forming on water to ultrashort optical pulses propagating in an optical fiber. While solitons are usually attributed to integrability, in recent years the notion of a soliton has been extended to various systems which are not necessarily integrable. Until now, the main emphasis has been given to well-known conservative soliton systems, but new avenues of inquiry were opened when physicists realized that solitary waves did indeed exist in a wide range of non-integrable and non-conservative systems leading to the concept of so-called dissipative optical solitons. Dissipative optical solitons have many unique properties which differ from those of their conservative counterparts. For example, except for very few cases, they form zero-parameter families and their properties are completely determined by the external parameters of the optical system. They can exist indefinitely in time, as long as these parameters stay constant. These features of dissipative solitons are highly desirable for several applications, such as in-line regeneration of optical data streams and generation of stable trains of laser pulses by mode-locked cavities.


An Exploration of Dynamical Systems and Chaos

An Exploration of Dynamical Systems and Chaos

Author: John H. Argyris

Publisher: Springer

Published: 2015-04-24

Total Pages: 884

ISBN-13: 3662460424

DOWNLOAD EBOOK

This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlarged second edition which comprises recently obtained research results of topical interest, and has been extended to include a new section on the basic concepts of probability theory. A completely new chapter on fully developed turbulence presents the successes of chaos theory, its limitations as well as future trends in the development of complex spatio-temporal structures. "This book will be of valuable help for my lectures" Hermann Haken, Stuttgart "This text-book should not be missing in any introductory lecture on non-linear systems and deterministic chaos" Wolfgang Kinzel, Würzburg “This well written book represents a comprehensive treatise on dynamical systems. It may serve as reference book for the whole field of nonlinear and chaotic systems and reports in a unique way on scientific developments of recent decades as well as important applications.” Joachim Peinke, Institute of Physics, Carl-von-Ossietzky University Oldenburg, Germany


Book Synopsis An Exploration of Dynamical Systems and Chaos by : John H. Argyris

Download or read book An Exploration of Dynamical Systems and Chaos written by John H. Argyris and published by Springer. This book was released on 2015-04-24 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlarged second edition which comprises recently obtained research results of topical interest, and has been extended to include a new section on the basic concepts of probability theory. A completely new chapter on fully developed turbulence presents the successes of chaos theory, its limitations as well as future trends in the development of complex spatio-temporal structures. "This book will be of valuable help for my lectures" Hermann Haken, Stuttgart "This text-book should not be missing in any introductory lecture on non-linear systems and deterministic chaos" Wolfgang Kinzel, Würzburg “This well written book represents a comprehensive treatise on dynamical systems. It may serve as reference book for the whole field of nonlinear and chaotic systems and reports in a unique way on scientific developments of recent decades as well as important applications.” Joachim Peinke, Institute of Physics, Carl-von-Ossietzky University Oldenburg, Germany


Quantum Neural Computation

Quantum Neural Computation

Author: Vladimir G. Ivancevic

Publisher: Springer Science & Business Media

Published: 2010-01-18

Total Pages: 938

ISBN-13: 9048133505

DOWNLOAD EBOOK

Quantum Neural Computation is a graduate–level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain’s nonlinear complexity, in order to perform a super–high–speed and error–free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence.


Book Synopsis Quantum Neural Computation by : Vladimir G. Ivancevic

Download or read book Quantum Neural Computation written by Vladimir G. Ivancevic and published by Springer Science & Business Media. This book was released on 2010-01-18 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Neural Computation is a graduate–level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain’s nonlinear complexity, in order to perform a super–high–speed and error–free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence.


New Trends In Control Theory

New Trends In Control Theory

Author: Vladimir G Ivancevic

Publisher: World Scientific

Published: 2012-11-27

Total Pages: 736

ISBN-13: 9814425966

DOWNLOAD EBOOK

New Trends in Control Theory is a graduate-level monographic textbook. It is a contemporary overview of modern trends in control theory. The introductory chapter gives the geometrical and quantum background, which is a necessary minimum for comprehensive reading of the book. The second chapter gives the basics of classical control theory, both linear and nonlinear. The third chapter shows the key role that Euclidean group of rigid motions plays in modern robotics and biomechanics. The fourth chapter gives an overview of modern quantum control, from both theoretical and measurement perspectives. The fifth chapter presents modern control and synchronization methods in complex systems and human crowds. The appendix provides the rest of the background material complementary to the introductory chapter.The book is designed as a one-semester course for engineers, applied mathematicians, computer scientists and physicists, both in industry and academia. It includes a most relevant bibliography on the subject and detailed index.


Book Synopsis New Trends In Control Theory by : Vladimir G Ivancevic

Download or read book New Trends In Control Theory written by Vladimir G Ivancevic and published by World Scientific. This book was released on 2012-11-27 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: New Trends in Control Theory is a graduate-level monographic textbook. It is a contemporary overview of modern trends in control theory. The introductory chapter gives the geometrical and quantum background, which is a necessary minimum for comprehensive reading of the book. The second chapter gives the basics of classical control theory, both linear and nonlinear. The third chapter shows the key role that Euclidean group of rigid motions plays in modern robotics and biomechanics. The fourth chapter gives an overview of modern quantum control, from both theoretical and measurement perspectives. The fifth chapter presents modern control and synchronization methods in complex systems and human crowds. The appendix provides the rest of the background material complementary to the introductory chapter.The book is designed as a one-semester course for engineers, applied mathematicians, computer scientists and physicists, both in industry and academia. It includes a most relevant bibliography on the subject and detailed index.


Reaction-Diffusion Computers

Reaction-Diffusion Computers

Author: Andrew Adamatzky

Publisher: Elsevier

Published: 2005-10-05

Total Pages: 349

ISBN-13: 0080461271

DOWNLOAD EBOOK

The book introduces a hot topic of novel and emerging computing paradigms and architectures -computation by travelling waves in reaction-diffusion media. A reaction-diffusion computer is a massively parallel computing device, where the micro-volumes of the chemical medium act as elementary few-bit processors, and chemical species diffuse and react in parallel. In the reaction-diffusion computer both the data and the results of the computation are encoded as concentration profiles of the reagents, or local disturbances of concentrations, whilst the computation per se is performed via the spreading and interaction of waves caused by the local disturbances. The monograph brings together results of a decade-long study into designing experimental and simulated prototypes of reaction-diffusion computing devices for image processing, path planning, robot navigation, computational geometry, logics and artificial intelligence. The book is unique because it gives a comprehensive presentation of the theoretical and experimental foundations, and cutting-edge computation techniques, chemical laboratory experimental setups and hardware implementation technology employed in the development of novel nature-inspired computing devices. Key Features: - Non-classical and fresh approach to theory of computation. - In depth exploration of novel and emerging paradigms of nature-inspired computing. - Simple to understand cellular-automata models will help readers/students to design their own computational experiments to advance ideas and concepts described in the book . - Detailed description of receipts and experimental setups of chemical laboratory reaction-diffusion processors will make the book an invaluable resource in practical studies of non-classical and nature-inspired computing architectures . - Step by step explanations of VLSI reaction-diffusion circuits will help students to design their own types of wave-based processors. Key Features: - Non-classical and fresh approach to theory of computation. - In depth exploration of novel and emerging paradigms of nature-inspired computing. - Simple to understand cellular-automata models will help readers/students to design their own computational experiments to advance ideas and concepts described in the book . - Detailed description of receipts and experimental setups of chemical laboratory reaction-diffusion processors will make the book an invaluable resource in practical studies of non-classical and nature-inspired computing architectures . - Step by step explanations of VLSI reaction-diffusion circuits will help students to design their own types of wave-based processors.


Book Synopsis Reaction-Diffusion Computers by : Andrew Adamatzky

Download or read book Reaction-Diffusion Computers written by Andrew Adamatzky and published by Elsevier. This book was released on 2005-10-05 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces a hot topic of novel and emerging computing paradigms and architectures -computation by travelling waves in reaction-diffusion media. A reaction-diffusion computer is a massively parallel computing device, where the micro-volumes of the chemical medium act as elementary few-bit processors, and chemical species diffuse and react in parallel. In the reaction-diffusion computer both the data and the results of the computation are encoded as concentration profiles of the reagents, or local disturbances of concentrations, whilst the computation per se is performed via the spreading and interaction of waves caused by the local disturbances. The monograph brings together results of a decade-long study into designing experimental and simulated prototypes of reaction-diffusion computing devices for image processing, path planning, robot navigation, computational geometry, logics and artificial intelligence. The book is unique because it gives a comprehensive presentation of the theoretical and experimental foundations, and cutting-edge computation techniques, chemical laboratory experimental setups and hardware implementation technology employed in the development of novel nature-inspired computing devices. Key Features: - Non-classical and fresh approach to theory of computation. - In depth exploration of novel and emerging paradigms of nature-inspired computing. - Simple to understand cellular-automata models will help readers/students to design their own computational experiments to advance ideas and concepts described in the book . - Detailed description of receipts and experimental setups of chemical laboratory reaction-diffusion processors will make the book an invaluable resource in practical studies of non-classical and nature-inspired computing architectures . - Step by step explanations of VLSI reaction-diffusion circuits will help students to design their own types of wave-based processors. Key Features: - Non-classical and fresh approach to theory of computation. - In depth exploration of novel and emerging paradigms of nature-inspired computing. - Simple to understand cellular-automata models will help readers/students to design their own computational experiments to advance ideas and concepts described in the book . - Detailed description of receipts and experimental setups of chemical laboratory reaction-diffusion processors will make the book an invaluable resource in practical studies of non-classical and nature-inspired computing architectures . - Step by step explanations of VLSI reaction-diffusion circuits will help students to design their own types of wave-based processors.