Dynamics and Control of Autonomous Space Vehicles and Robotics

Dynamics and Control of Autonomous Space Vehicles and Robotics

Author: Ranjan Vepa

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 371

ISBN-13: 1108422845

DOWNLOAD EBOOK

Presents the established principles underpinning space robotics with a thorough and modern approach. This text is perfect for professionals in the field looking to gain an understanding of real-life applications of manipulators on satellites, and of the dynamics of satellites carrying robotic manipulators and of planetary rovers.


Book Synopsis Dynamics and Control of Autonomous Space Vehicles and Robotics by : Ranjan Vepa

Download or read book Dynamics and Control of Autonomous Space Vehicles and Robotics written by Ranjan Vepa and published by Cambridge University Press. This book was released on 2019-05-02 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the established principles underpinning space robotics with a thorough and modern approach. This text is perfect for professionals in the field looking to gain an understanding of real-life applications of manipulators on satellites, and of the dynamics of satellites carrying robotic manipulators and of planetary rovers.


Space Robotics: Dynamics and Control

Space Robotics: Dynamics and Control

Author: Yangsheng Xu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 291

ISBN-13: 1461535883

DOWNLOAD EBOOK

Robotic technology offers two potential benefits for future space exploration. One benefit is minimizing the risk that astronauts face. The other benefit is increasing their productivity. Realizing the benefits of robotic technology in space will require solving several problems which are unique and now becoming active research topics. One of the most important research areas is dynamics, control, motion and planning for space robots by considering the dynamic interaction between the robot and the base (space station, space shuttle, or satellite). Any inefficiency in the planning and control can considerably risk by success of the space mission. Space Robotics: Dynamics and Control presents a collection of papers concerning fundamental problems in dynamics and control of space robots, focussing on issues relevant to dynamic base/robot interaction. The authors are all pioneers in theoretical analysis and experimental systems development of space robot technology. The chapters are organized within three problem areas: dynamics problems, nonholonomic nature problems, and control problems. This collection provides a solid reference for researchers in robotics, mechanics, control, and astronautical science.


Book Synopsis Space Robotics: Dynamics and Control by : Yangsheng Xu

Download or read book Space Robotics: Dynamics and Control written by Yangsheng Xu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robotic technology offers two potential benefits for future space exploration. One benefit is minimizing the risk that astronauts face. The other benefit is increasing their productivity. Realizing the benefits of robotic technology in space will require solving several problems which are unique and now becoming active research topics. One of the most important research areas is dynamics, control, motion and planning for space robots by considering the dynamic interaction between the robot and the base (space station, space shuttle, or satellite). Any inefficiency in the planning and control can considerably risk by success of the space mission. Space Robotics: Dynamics and Control presents a collection of papers concerning fundamental problems in dynamics and control of space robots, focussing on issues relevant to dynamic base/robot interaction. The authors are all pioneers in theoretical analysis and experimental systems development of space robot technology. The chapters are organized within three problem areas: dynamics problems, nonholonomic nature problems, and control problems. This collection provides a solid reference for researchers in robotics, mechanics, control, and astronautical science.


Dynamics and Control of Robotic Systems

Dynamics and Control of Robotic Systems

Author: Andrew J. Kurdila

Publisher: John Wiley & Sons

Published: 2019-12-16

Total Pages: 514

ISBN-13: 1119524830

DOWNLOAD EBOOK

A comprehensive review of the principles and dynamics of robotic systems Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines. The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and: Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems Presents the techniques of analytical mechanics of robotics Includes a review of advanced topics such as the recursive order N formulation Contains a wide array of design and analysis problems for robotic systems Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.


Book Synopsis Dynamics and Control of Robotic Systems by : Andrew J. Kurdila

Download or read book Dynamics and Control of Robotic Systems written by Andrew J. Kurdila and published by John Wiley & Sons. This book was released on 2019-12-16 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of the principles and dynamics of robotic systems Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines. The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and: Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems Presents the techniques of analytical mechanics of robotics Includes a review of advanced topics such as the recursive order N formulation Contains a wide array of design and analysis problems for robotic systems Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.


Formation Control of Multiple Autonomous Vehicle Systems

Formation Control of Multiple Autonomous Vehicle Systems

Author: Hugh H. T. Liu

Publisher: John Wiley & Sons

Published: 2018-10-08

Total Pages: 268

ISBN-13: 1119263069

DOWNLOAD EBOOK

This text explores formation control of vehicle systems and introduces three representative systems: space systems, aerial systems and robotic systems Formation Control of Multiple Autonomous Vehicle Systems offers a review of the core concepts of dynamics and control and examines the dynamics and control aspects of formation control in order to study a wide spectrum of dynamic vehicle systems such as spacecraft, unmanned aerial vehicles and robots. The text puts the focus on formation control that enables and stabilizes formation configuration, as well as formation reconfiguration of these vehicle systems. The authors develop a uniform paradigm of describing vehicle systems’ dynamic behaviour that addresses both individual vehicle’s motion and overall group’s movement, as well as interactions between vehicles. The authors explain how the design of proper control techniques regulate the formation motion of these vehicles and the development of a system level decision-making strategy that increases the level of autonomy for the entire group of vehicles to carry out their missions. The text is filled with illustrative case studies in the domains of space, aerial and robotics. • Contains uniform coverage of "formation" dynamic systems development • Presents representative case studies in selected applications in the space, aerial and robotic systems domains • Introduces an experimental platform of using laboratory three-degree-of-freedom helicopters with step-by-step instructions as an example • Provides open source example models and simulation codes • Includes notes and further readings that offer details on relevant research topics, recent progress and further developments in the field Written for researchers and academics in robotics and unmanned systems looking at motion synchronization and formation problems, Formation Control of Multiple Autonomous Vehicle Systems is a vital resource that explores the motion synchronization and formation control of vehicle systems as represented by three representative systems: space systems, aerial systems and robotic systems.


Book Synopsis Formation Control of Multiple Autonomous Vehicle Systems by : Hugh H. T. Liu

Download or read book Formation Control of Multiple Autonomous Vehicle Systems written by Hugh H. T. Liu and published by John Wiley & Sons. This book was released on 2018-10-08 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores formation control of vehicle systems and introduces three representative systems: space systems, aerial systems and robotic systems Formation Control of Multiple Autonomous Vehicle Systems offers a review of the core concepts of dynamics and control and examines the dynamics and control aspects of formation control in order to study a wide spectrum of dynamic vehicle systems such as spacecraft, unmanned aerial vehicles and robots. The text puts the focus on formation control that enables and stabilizes formation configuration, as well as formation reconfiguration of these vehicle systems. The authors develop a uniform paradigm of describing vehicle systems’ dynamic behaviour that addresses both individual vehicle’s motion and overall group’s movement, as well as interactions between vehicles. The authors explain how the design of proper control techniques regulate the formation motion of these vehicles and the development of a system level decision-making strategy that increases the level of autonomy for the entire group of vehicles to carry out their missions. The text is filled with illustrative case studies in the domains of space, aerial and robotics. • Contains uniform coverage of "formation" dynamic systems development • Presents representative case studies in selected applications in the space, aerial and robotic systems domains • Introduces an experimental platform of using laboratory three-degree-of-freedom helicopters with step-by-step instructions as an example • Provides open source example models and simulation codes • Includes notes and further readings that offer details on relevant research topics, recent progress and further developments in the field Written for researchers and academics in robotics and unmanned systems looking at motion synchronization and formation problems, Formation Control of Multiple Autonomous Vehicle Systems is a vital resource that explores the motion synchronization and formation control of vehicle systems as represented by three representative systems: space systems, aerial systems and robotic systems.


Teleoperation and Robotics in Space

Teleoperation and Robotics in Space

Author: Carl F. Ruoff

Publisher: AIAA

Published: 1994

Total Pages: 528

ISBN-13: 9781600864148

DOWNLOAD EBOOK


Book Synopsis Teleoperation and Robotics in Space by : Carl F. Ruoff

Download or read book Teleoperation and Robotics in Space written by Carl F. Ruoff and published by AIAA. This book was released on 1994 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Dynamics and Control of Robotic Systems

Dynamics and Control of Robotic Systems

Author: Andrew J. Kurdila

Publisher: John Wiley & Sons

Published: 2019-10-29

Total Pages: 700

ISBN-13: 1119524954

DOWNLOAD EBOOK

A comprehensive review of the principles and dynamics of robotic systems Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines. The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and: Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems Presents the techniques of analytical mechanics of robotics Includes a review of advanced topics such as the recursive order N formulation Contains a wide array of design and analysis problems for robotic systems Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.


Book Synopsis Dynamics and Control of Robotic Systems by : Andrew J. Kurdila

Download or read book Dynamics and Control of Robotic Systems written by Andrew J. Kurdila and published by John Wiley & Sons. This book was released on 2019-10-29 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of the principles and dynamics of robotic systems Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines. The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and: Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems Presents the techniques of analytical mechanics of robotics Includes a review of advanced topics such as the recursive order N formulation Contains a wide array of design and analysis problems for robotic systems Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.


Spacecraft Formation Flying

Spacecraft Formation Flying

Author: Kyle Alfriend

Publisher: Elsevier

Published: 2009-11-16

Total Pages: 403

ISBN-13: 0080559654

DOWNLOAD EBOOK

Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier’s Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation


Book Synopsis Spacecraft Formation Flying by : Kyle Alfriend

Download or read book Spacecraft Formation Flying written by Kyle Alfriend and published by Elsevier. This book was released on 2009-11-16 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier’s Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation


Tethered Space Robot

Tethered Space Robot

Author: Panfeng Huang

Publisher: Academic Press

Published: 2017-11-06

Total Pages: 316

ISBN-13: 0128123109

DOWNLOAD EBOOK

Tethered Space Robot: Dynamics, Measurement, and Control discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove non-cooperative targets such as space debris. It is the first time the concept has been described in a book, which describes the system and mission design of TSR and then introduces the latest research on pose measurement, dynamics and control. The book covers the TSR system, from principle to applications, including a complete implementing scheme. A useful reference for researchers, engineers and students interested in space robots, OOS and debris removal. Provides for the first time comprehensive coverage of various aspects of tethered space robots (TSR) Presents both fundamental principles and application technologies including pose measurement, dynamics and control Describes some new control techniques, including a coordinated control method for tracking optimal trajectory, coordinated coupling control and coordinated approaching control using mobile tether attachment points


Book Synopsis Tethered Space Robot by : Panfeng Huang

Download or read book Tethered Space Robot written by Panfeng Huang and published by Academic Press. This book was released on 2017-11-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tethered Space Robot: Dynamics, Measurement, and Control discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove non-cooperative targets such as space debris. It is the first time the concept has been described in a book, which describes the system and mission design of TSR and then introduces the latest research on pose measurement, dynamics and control. The book covers the TSR system, from principle to applications, including a complete implementing scheme. A useful reference for researchers, engineers and students interested in space robots, OOS and debris removal. Provides for the first time comprehensive coverage of various aspects of tethered space robots (TSR) Presents both fundamental principles and application technologies including pose measurement, dynamics and control Describes some new control techniques, including a coordinated control method for tracking optimal trajectory, coordinated coupling control and coordinated approaching control using mobile tether attachment points


Robot Dynamics And Control

Robot Dynamics And Control

Author: Mark W Spong

Publisher: John Wiley & Sons

Published: 2008-08-04

Total Pages: 356

ISBN-13: 9788126517800

DOWNLOAD EBOOK

This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. It provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. The book includes many worked examples, examples illustrating all aspects of the theory, and problems.


Book Synopsis Robot Dynamics And Control by : Mark W Spong

Download or read book Robot Dynamics And Control written by Mark W Spong and published by John Wiley & Sons. This book was released on 2008-08-04 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. It provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. The book includes many worked examples, examples illustrating all aspects of the theory, and problems.


Multibody System Dynamics, Robotics and Control

Multibody System Dynamics, Robotics and Control

Author: Hubert Gattringer

Publisher: Springer Science & Business Media

Published: 2013-01-06

Total Pages: 317

ISBN-13: 3709112893

DOWNLOAD EBOOK

The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.


Book Synopsis Multibody System Dynamics, Robotics and Control by : Hubert Gattringer

Download or read book Multibody System Dynamics, Robotics and Control written by Hubert Gattringer and published by Springer Science & Business Media. This book was released on 2013-01-06 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.