Theory of Oscillators

Theory of Oscillators

Author: A. A. Andronov

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 848

ISBN-13: 1483194728

DOWNLOAD EBOOK

Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-oscillating systems. This book discusses as well the discontinuous self-oscillations of a symmetrical multi-vibrator neglecting anode reaction. The final chapter deals with the immense practical importance of the stability of physical systems containing energy sources particularly control systems. This book is a valuable resource for electrical engineers, scientists, physicists, and mathematicians.


Book Synopsis Theory of Oscillators by : A. A. Andronov

Download or read book Theory of Oscillators written by A. A. Andronov and published by Elsevier. This book was released on 2013-10-22 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-oscillating systems. This book discusses as well the discontinuous self-oscillations of a symmetrical multi-vibrator neglecting anode reaction. The final chapter deals with the immense practical importance of the stability of physical systems containing energy sources particularly control systems. This book is a valuable resource for electrical engineers, scientists, physicists, and mathematicians.


Electrical Oscillators

Electrical Oscillators

Author: Nikola Tesla

Publisher: Simon and Schuster

Published: 2015-08-24

Total Pages: 22

ISBN-13: 1681463539

DOWNLOAD EBOOK

Nikola Tesla was a genius who revolutionized how the world looks at electricity. In 1893 he patented an electro-mechanical oscillator as a steam-powered electric generator. By his own account, one version of the oscillator caused an earthquake in New York City in 1898, for which it was accorded the moniker, "Tesla's earthquake machine."


Book Synopsis Electrical Oscillators by : Nikola Tesla

Download or read book Electrical Oscillators written by Nikola Tesla and published by Simon and Schuster. This book was released on 2015-08-24 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nikola Tesla was a genius who revolutionized how the world looks at electricity. In 1893 he patented an electro-mechanical oscillator as a steam-powered electric generator. By his own account, one version of the oscillator caused an earthquake in New York City in 1898, for which it was accorded the moniker, "Tesla's earthquake machine."


Low-Power Crystal and MEMS Oscillators

Low-Power Crystal and MEMS Oscillators

Author: Eric Vittoz

Publisher: Springer Science & Business Media

Published: 2010-08-03

Total Pages: 219

ISBN-13: 9048193958

DOWNLOAD EBOOK

Electronic oscillators using an electromechanical device as a frequency reference are irreplaceable components of systems-on-chip for time-keeping, carrier frequency generation and digital clock generation. With their excellent frequency stability and very large quality factor Q, quartz crystal resonators have been the dominant solution for more than 70 years. But new possibilities are now offered by micro-electro-mechanical (MEM) resonators, that have a qualitatively identical equivalent electrical circuit. Low-Power Crystal and MEMS Oscillators concentrates on the analysis and design of the most important schemes of integrated oscillator circuits. It explains how these circuits can be optimized by best exploiting the very high Q of the resonator to achieve the minimum power consumption compatible with the requirements on frequency stability and phase noise. The author has 40 years of experience in designing very low-power, high-performance quartz oscillators for watches and other battery operated systems and has accumulated most of the material during this period. Some additional original material related to phase noise has been added. The explanations are mainly supported by analytical developments, whereas computer simulation is limited to numerical examples. The main part is dedicated to the most important Pierce circuit, with a full design procedure illustrated by examples. Symmetrical circuits that became popular for modern telecommunication systems are analyzed in a last chapter.


Book Synopsis Low-Power Crystal and MEMS Oscillators by : Eric Vittoz

Download or read book Low-Power Crystal and MEMS Oscillators written by Eric Vittoz and published by Springer Science & Business Media. This book was released on 2010-08-03 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic oscillators using an electromechanical device as a frequency reference are irreplaceable components of systems-on-chip for time-keeping, carrier frequency generation and digital clock generation. With their excellent frequency stability and very large quality factor Q, quartz crystal resonators have been the dominant solution for more than 70 years. But new possibilities are now offered by micro-electro-mechanical (MEM) resonators, that have a qualitatively identical equivalent electrical circuit. Low-Power Crystal and MEMS Oscillators concentrates on the analysis and design of the most important schemes of integrated oscillator circuits. It explains how these circuits can be optimized by best exploiting the very high Q of the resonator to achieve the minimum power consumption compatible with the requirements on frequency stability and phase noise. The author has 40 years of experience in designing very low-power, high-performance quartz oscillators for watches and other battery operated systems and has accumulated most of the material during this period. Some additional original material related to phase noise has been added. The explanations are mainly supported by analytical developments, whereas computer simulation is limited to numerical examples. The main part is dedicated to the most important Pierce circuit, with a full design procedure illustrated by examples. Symmetrical circuits that became popular for modern telecommunication systems are analyzed in a last chapter.


Design of High-Performance CMOS Voltage-Controlled Oscillators

Design of High-Performance CMOS Voltage-Controlled Oscillators

Author: Liang Dai

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 170

ISBN-13: 1461511453

DOWNLOAD EBOOK

Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.


Book Synopsis Design of High-Performance CMOS Voltage-Controlled Oscillators by : Liang Dai

Download or read book Design of High-Performance CMOS Voltage-Controlled Oscillators written by Liang Dai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.


Oscillators and Oscillator Systems

Oscillators and Oscillator Systems

Author: Jan R. Westra

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 289

ISBN-13: 1475761171

DOWNLOAD EBOOK

In many electronic systems, such as telecommunication or measurement systems, oscillations play an essential role in the information processing. Each electronic system poses different requirements on these oscillations, depending on the type and performance level of that specific system. It is the designer's challenge to find the specifications for the desired oscillation and to implement an electronic circuit meeting these specifications. As the desired oscillations have to fulfill many requirements, the design process can become very complex. To find an optimal solution, the designer requires a design methodology that is preferably completely top-down oriented. To achieve such a methodology, it must be assured that each property of the system can be optimized independently of all other properties. Oscillators and Oscillator Systems: Classification, Analysis and Synthesis takes a systematic approach to the design of high-performance oscillators and oscillator systems. A fundamental classification of oscillators, based on their internal timing references, forms the basis of this approach. The classification enables the designer to make strategic design decisions at a high hierarchical level of the design process. Techniques, derived from the systematic approach, are supplied to the designer to enable him or her to bring the performance of the system as close as possible to the fundamental limits. Oscillators and Oscillator Systems: Classification, Analysis and Synthesis is an excellent reference for researchers and circuit designers, and may be used as a text for advanced courses on the topic.


Book Synopsis Oscillators and Oscillator Systems by : Jan R. Westra

Download or read book Oscillators and Oscillator Systems written by Jan R. Westra and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many electronic systems, such as telecommunication or measurement systems, oscillations play an essential role in the information processing. Each electronic system poses different requirements on these oscillations, depending on the type and performance level of that specific system. It is the designer's challenge to find the specifications for the desired oscillation and to implement an electronic circuit meeting these specifications. As the desired oscillations have to fulfill many requirements, the design process can become very complex. To find an optimal solution, the designer requires a design methodology that is preferably completely top-down oriented. To achieve such a methodology, it must be assured that each property of the system can be optimized independently of all other properties. Oscillators and Oscillator Systems: Classification, Analysis and Synthesis takes a systematic approach to the design of high-performance oscillators and oscillator systems. A fundamental classification of oscillators, based on their internal timing references, forms the basis of this approach. The classification enables the designer to make strategic design decisions at a high hierarchical level of the design process. Techniques, derived from the systematic approach, are supplied to the designer to enable him or her to bring the performance of the system as close as possible to the fundamental limits. Oscillators and Oscillator Systems: Classification, Analysis and Synthesis is an excellent reference for researchers and circuit designers, and may be used as a text for advanced courses on the topic.


Design of High-Performance CMOS Voltage-Controlled Oscillators

Design of High-Performance CMOS Voltage-Controlled Oscillators

Author: Liang Dai

Publisher: Springer Science & Business Media

Published: 2003

Total Pages: 186

ISBN-13: 9781402072383

DOWNLOAD EBOOK

Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.


Book Synopsis Design of High-Performance CMOS Voltage-Controlled Oscillators by : Liang Dai

Download or read book Design of High-Performance CMOS Voltage-Controlled Oscillators written by Liang Dai and published by Springer Science & Business Media. This book was released on 2003 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.


Multiphase Reference Signal Generation Using Coupled Oscillators

Multiphase Reference Signal Generation Using Coupled Oscillators

Author: Mohammad Hekmat

Publisher: Stanford University

Published: 2011

Total Pages: 132

ISBN-13:

DOWNLOAD EBOOK

The continuing trend toward higher frequencies of operation poses formidable challenges in the design of multiphase reference signals at mm-wave frequencies and beyond. Conventional multiphase reference generation techniques face serious implementation or performance challenges when scaled to microwave and mm-wave frequencies. Ring oscillators suffer from poor phase noise, and hence fail to fulfill the stringent requirements of most wireless applications. Generating multiphase signals by dividing the output of an oscillator operating at multiples of the intended frequency of operation is impractical when frequencies approach the mm-wave range. Cross-coupled LC oscillators have been explored as a promising alternative for multiphase and, in particular, quadrature generation. However, the frequency ambiguity that results from multiple modes of operation, as well as the severe phase noise degradation due to their inherent off-resonance operation, has inhibited their utilization in practice. This work introduces a new topology for coupled oscillators that solves the frequency ambiguity issue and mitigates phase noise degradation in coupled oscillators by employing an array of LC oscillators that are coupled in a bidirectional fashion. The proposed bidirectional coupling enforces operation at the resonance frequency of the LC tanks of the oscillator in the loop, a property that proves to be key in solving both the aforementioned issues. A quadrature frequency doubling topology using bidirectionally-coupled oscillators is also presented. The proposed approach relaxes the linearity requirements on the mixers employed in the circuit, thus allowing the frequency doubler to use highly nonlinear mixers. An experimental prototype integrated in a 90-nm CMOS technology provides output phases in increments of 45 degrees and achieves a phase noise of −101 dBc/Hz at 1- MHz offset from a 19.6-GHz carrier. The quadrature 40-GHz signal generated on chip drives a single-sideband transmitter that achieves a sideband suppression of better than 45 dB.


Book Synopsis Multiphase Reference Signal Generation Using Coupled Oscillators by : Mohammad Hekmat

Download or read book Multiphase Reference Signal Generation Using Coupled Oscillators written by Mohammad Hekmat and published by Stanford University. This book was released on 2011 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continuing trend toward higher frequencies of operation poses formidable challenges in the design of multiphase reference signals at mm-wave frequencies and beyond. Conventional multiphase reference generation techniques face serious implementation or performance challenges when scaled to microwave and mm-wave frequencies. Ring oscillators suffer from poor phase noise, and hence fail to fulfill the stringent requirements of most wireless applications. Generating multiphase signals by dividing the output of an oscillator operating at multiples of the intended frequency of operation is impractical when frequencies approach the mm-wave range. Cross-coupled LC oscillators have been explored as a promising alternative for multiphase and, in particular, quadrature generation. However, the frequency ambiguity that results from multiple modes of operation, as well as the severe phase noise degradation due to their inherent off-resonance operation, has inhibited their utilization in practice. This work introduces a new topology for coupled oscillators that solves the frequency ambiguity issue and mitigates phase noise degradation in coupled oscillators by employing an array of LC oscillators that are coupled in a bidirectional fashion. The proposed bidirectional coupling enforces operation at the resonance frequency of the LC tanks of the oscillator in the loop, a property that proves to be key in solving both the aforementioned issues. A quadrature frequency doubling topology using bidirectionally-coupled oscillators is also presented. The proposed approach relaxes the linearity requirements on the mixers employed in the circuit, thus allowing the frequency doubler to use highly nonlinear mixers. An experimental prototype integrated in a 90-nm CMOS technology provides output phases in increments of 45 degrees and achieves a phase noise of −101 dBc/Hz at 1- MHz offset from a 19.6-GHz carrier. The quadrature 40-GHz signal generated on chip drives a single-sideband transmitter that achieves a sideband suppression of better than 45 dB.


The Electrical Experimenter

The Electrical Experimenter

Author:

Publisher:

Published: 1919

Total Pages: 744

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis The Electrical Experimenter by :

Download or read book The Electrical Experimenter written by and published by . This book was released on 1919 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Noise in High-Frequency Circuits and Oscillators

Noise in High-Frequency Circuits and Oscillators

Author: Burkhard Schiek

Publisher: John Wiley & Sons

Published: 2006-07-14

Total Pages: 424

ISBN-13: 0470038934

DOWNLOAD EBOOK

A classroom-tested book addressing key issues of electrical noise This book examines noise phenomena in linear and nonlinear high-frequency circuits from both qualitative and quantitative perspectives. The authors explore important noise mechanisms using equivalent sources and analytical and numerical methods. Readers learn how to manage electrical noise to improve the sensitivity and resolution of communication, navigation, measurement, and other electronic systems. Noise in High-Frequency Circuits and Oscillators has its origins in a university course taught by the authors. As a result, it is thoroughly classroom-tested and carefully structured to facilitate learning. Readers are given a solid foundation in the basics that allows them to proceed to more advanced and sophisticated themes such as computer-aided noise simulation of high-frequency circuits. Following a discussion of mathematical and system-oriented fundamentals, the book covers: * Noise of linear one- and two-ports * Measurement of noise parameters * Noise of diodes and transistors * Parametric circuits * Noise in nonlinear circuits * Noise in oscillators * Quantization noise Each chapter contains a set of numerical and analytical problems that enable readers to apply their newfound knowledge to real-world problems. Solutions are provided in the appendices. With their many years of classroom experience, the authors have designed a book that is ideal for graduate students in engineering and physics. It also addresses key issues and points to solutions for engineers working in the burgeoning satellite and wireless communications industries.


Book Synopsis Noise in High-Frequency Circuits and Oscillators by : Burkhard Schiek

Download or read book Noise in High-Frequency Circuits and Oscillators written by Burkhard Schiek and published by John Wiley & Sons. This book was released on 2006-07-14 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classroom-tested book addressing key issues of electrical noise This book examines noise phenomena in linear and nonlinear high-frequency circuits from both qualitative and quantitative perspectives. The authors explore important noise mechanisms using equivalent sources and analytical and numerical methods. Readers learn how to manage electrical noise to improve the sensitivity and resolution of communication, navigation, measurement, and other electronic systems. Noise in High-Frequency Circuits and Oscillators has its origins in a university course taught by the authors. As a result, it is thoroughly classroom-tested and carefully structured to facilitate learning. Readers are given a solid foundation in the basics that allows them to proceed to more advanced and sophisticated themes such as computer-aided noise simulation of high-frequency circuits. Following a discussion of mathematical and system-oriented fundamentals, the book covers: * Noise of linear one- and two-ports * Measurement of noise parameters * Noise of diodes and transistors * Parametric circuits * Noise in nonlinear circuits * Noise in oscillators * Quantization noise Each chapter contains a set of numerical and analytical problems that enable readers to apply their newfound knowledge to real-world problems. Solutions are provided in the appendices. With their many years of classroom experience, the authors have designed a book that is ideal for graduate students in engineering and physics. It also addresses key issues and points to solutions for engineers working in the burgeoning satellite and wireless communications industries.


The Design of Low Noise Oscillators

The Design of Low Noise Oscillators

Author: Ali Hajimiri

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 214

ISBN-13: 0306481995

DOWNLOAD EBOOK

It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.


Book Synopsis The Design of Low Noise Oscillators by : Ali Hajimiri

Download or read book The Design of Low Noise Oscillators written by Ali Hajimiri and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.