Electrocatalysis of Direct Methanol Fuel Cells

Electrocatalysis of Direct Methanol Fuel Cells

Author: Jiujun Zhang

Publisher: John Wiley & Sons

Published: 2009-10-26

Total Pages: 605

ISBN-13: 3527323775

DOWNLOAD EBOOK

This first book to focus on a comprehensive description on DMFC electrocatalysis draws a clear picture of the current status of DMFC technology, especially the advances, challenges and perspectives in the field. Leading researchers from universities, government laboratories and fuel cell industries in North America, Europe and Asia share their knowledge and information on recent advances in the fundamental theories, experimental methodologies and research achievements. In order to help readers better understand the science and technology of the subject, some important and representative figures, tables, photos, and comprehensive lists of reference papers are also included, such that all the information needed on this topic may be easily located. An indispensable source for physical, catalytic, electro- and solid state chemists, as well as materials scientists and chemists in industry.


Book Synopsis Electrocatalysis of Direct Methanol Fuel Cells by : Jiujun Zhang

Download or read book Electrocatalysis of Direct Methanol Fuel Cells written by Jiujun Zhang and published by John Wiley & Sons. This book was released on 2009-10-26 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book to focus on a comprehensive description on DMFC electrocatalysis draws a clear picture of the current status of DMFC technology, especially the advances, challenges and perspectives in the field. Leading researchers from universities, government laboratories and fuel cell industries in North America, Europe and Asia share their knowledge and information on recent advances in the fundamental theories, experimental methodologies and research achievements. In order to help readers better understand the science and technology of the subject, some important and representative figures, tables, photos, and comprehensive lists of reference papers are also included, such that all the information needed on this topic may be easily located. An indispensable source for physical, catalytic, electro- and solid state chemists, as well as materials scientists and chemists in industry.


Direct Methanol Fuel Cell Technology

Direct Methanol Fuel Cell Technology

Author: Kingshuk Dutta

Publisher: Elsevier

Published: 2020-02-25

Total Pages: 565

ISBN-13: 0128191597

DOWNLOAD EBOOK

Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells Includes modeling of direct methanol fuel cells to understand their scaling up potentials Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects


Book Synopsis Direct Methanol Fuel Cell Technology by : Kingshuk Dutta

Download or read book Direct Methanol Fuel Cell Technology written by Kingshuk Dutta and published by Elsevier. This book was released on 2020-02-25 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells Includes modeling of direct methanol fuel cells to understand their scaling up potentials Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects


Direct Methanol Fuel Cells

Direct Methanol Fuel Cells

Author: Electrochemical Society. Energy Technology Division

Publisher:

Published: 2001

Total Pages: 366

ISBN-13:

DOWNLOAD EBOOK

"Energy Technology, Physical Electrochemistry and Battery Divisions."


Book Synopsis Direct Methanol Fuel Cells by : Electrochemical Society. Energy Technology Division

Download or read book Direct Methanol Fuel Cells written by Electrochemical Society. Energy Technology Division and published by . This book was released on 2001 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Energy Technology, Physical Electrochemistry and Battery Divisions."


Electrocatalysis in Fuel Cells

Electrocatalysis in Fuel Cells

Author: Minhua Shao

Publisher: MDPI

Published: 2018-09-28

Total Pages: 689

ISBN-13: 3038422347

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Electrocatalysis in Fuel Cells" that was published in Catalysts


Book Synopsis Electrocatalysis in Fuel Cells by : Minhua Shao

Download or read book Electrocatalysis in Fuel Cells written by Minhua Shao and published by MDPI. This book was released on 2018-09-28 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Electrocatalysis in Fuel Cells" that was published in Catalysts


PEM Fuel Cell Electrocatalysts and Catalyst Layers

PEM Fuel Cell Electrocatalysts and Catalyst Layers

Author: Jiujun Zhang

Publisher: Springer Science & Business Media

Published: 2008-08-26

Total Pages: 1147

ISBN-13: 1848009364

DOWNLOAD EBOOK

Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.


Book Synopsis PEM Fuel Cell Electrocatalysts and Catalyst Layers by : Jiujun Zhang

Download or read book PEM Fuel Cell Electrocatalysts and Catalyst Layers written by Jiujun Zhang and published by Springer Science & Business Media. This book was released on 2008-08-26 with total page 1147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.


Electrocatalysts for Low Temperature Fuel Cells

Electrocatalysts for Low Temperature Fuel Cells

Author: Thandavarayan Maiyalagan

Publisher: John Wiley & Sons

Published: 2017-05-04

Total Pages: 420

ISBN-13: 3527803866

DOWNLOAD EBOOK

Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.


Book Synopsis Electrocatalysts for Low Temperature Fuel Cells by : Thandavarayan Maiyalagan

Download or read book Electrocatalysts for Low Temperature Fuel Cells written by Thandavarayan Maiyalagan and published by John Wiley & Sons. This book was released on 2017-05-04 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.


Direct Methanol Fuel Cells

Direct Methanol Fuel Cells

Author: Antonio Salvatore Aricò

Publisher:

Published: 2010

Total Pages: 0

ISBN-13: 9781608768653

DOWNLOAD EBOOK

This book deals with an analysis of materials issues, status of technologies and potential applications of direct methanol fuel cells. The principle of operation of direct methanol fuel cells and the status of knowledge in the basic research areas are presented. The technology of direct methanol fuel cells is discussed in this book with particular regard to fabrication methodologies for the manufacturing of catalysts, electrolytes membrane-electrode assemblies, stack hardware and system design.


Book Synopsis Direct Methanol Fuel Cells by : Antonio Salvatore Aricò

Download or read book Direct Methanol Fuel Cells written by Antonio Salvatore Aricò and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with an analysis of materials issues, status of technologies and potential applications of direct methanol fuel cells. The principle of operation of direct methanol fuel cells and the status of knowledge in the basic research areas are presented. The technology of direct methanol fuel cells is discussed in this book with particular regard to fabrication methodologies for the manufacturing of catalysts, electrolytes membrane-electrode assemblies, stack hardware and system design.


Tungsten Carbides as Anode Electrocatalyst of Direct Methanol Fuel Cell

Tungsten Carbides as Anode Electrocatalyst of Direct Methanol Fuel Cell

Author: Qiao Ren

Publisher: ProQuest

Published: 2007

Total Pages:

ISBN-13: 9780549181675

DOWNLOAD EBOOK

Due to the steady depletion of mineral fuels and the environmental pollution from conventional engines, there have been great interests in developing fuel cells. At present, the direct methanol fuel cell (DMFC) is one of the leading fuel cell systems. Currently, the widely used electrocatalyst for the DMFC is the Pt/Ru bimetallic system. But the disadvantages of Pt/Ru catalyst are its high costs, and its susceptibility toward CO poisoning due to the strong chemisorption of CO. Therefore, an alternative electrocatalyst with the activity toward the dissociation of methanol and water is very desirable to facilitate the commercialization of DMFC. The transition metal carbides have been shown to exhibit catalytic properties similar to Pt-Group metals in reactions with hydrocarbon molecules. This work is to determine the feasibility of using WCs as an alternative anode catalyst. This work began by synthesizing and characterizing the PVD WC thin films, in order to bridge the materials gap between previous model crystal surfaces and the more realistic electrocatalysts. Fundamental surface science techniques where applied to examine the composition of the film. Ex situ cyclic voltammetry (CV) measurements have been applied to examine the electrocatalyst stability of the thin films. Supported WCs synthesized by temperature programmed reaction (TPR) technique was also used as a bridge material with a larger surface area than PVD thin films. Supported WC samples were also tested by surface science techniques. CV measurements were performed to examine the electrocatalyst stability and methanol oxidation in an electrochemical environment. In ex situ CV study, the solution is very complicated for deciding the activity of WC towards methanol oxidation. A gas phase reaction, cyclohexene self-hydrogenation as a probe reaction for WC reactivity was performed in a batch reactor with IR, in order to evaluate the dehydrogenation activity of WC and Pt-modified WC.


Book Synopsis Tungsten Carbides as Anode Electrocatalyst of Direct Methanol Fuel Cell by : Qiao Ren

Download or read book Tungsten Carbides as Anode Electrocatalyst of Direct Methanol Fuel Cell written by Qiao Ren and published by ProQuest. This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the steady depletion of mineral fuels and the environmental pollution from conventional engines, there have been great interests in developing fuel cells. At present, the direct methanol fuel cell (DMFC) is one of the leading fuel cell systems. Currently, the widely used electrocatalyst for the DMFC is the Pt/Ru bimetallic system. But the disadvantages of Pt/Ru catalyst are its high costs, and its susceptibility toward CO poisoning due to the strong chemisorption of CO. Therefore, an alternative electrocatalyst with the activity toward the dissociation of methanol and water is very desirable to facilitate the commercialization of DMFC. The transition metal carbides have been shown to exhibit catalytic properties similar to Pt-Group metals in reactions with hydrocarbon molecules. This work is to determine the feasibility of using WCs as an alternative anode catalyst. This work began by synthesizing and characterizing the PVD WC thin films, in order to bridge the materials gap between previous model crystal surfaces and the more realistic electrocatalysts. Fundamental surface science techniques where applied to examine the composition of the film. Ex situ cyclic voltammetry (CV) measurements have been applied to examine the electrocatalyst stability of the thin films. Supported WCs synthesized by temperature programmed reaction (TPR) technique was also used as a bridge material with a larger surface area than PVD thin films. Supported WC samples were also tested by surface science techniques. CV measurements were performed to examine the electrocatalyst stability and methanol oxidation in an electrochemical environment. In ex situ CV study, the solution is very complicated for deciding the activity of WC towards methanol oxidation. A gas phase reaction, cyclohexene self-hydrogenation as a probe reaction for WC reactivity was performed in a batch reactor with IR, in order to evaluate the dehydrogenation activity of WC and Pt-modified WC.


Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Author: Christoph Hartnig

Publisher: Elsevier

Published: 2012-03-19

Total Pages: 437

ISBN-13: 0857095471

DOWNLOAD EBOOK

Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques.With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology Volumes 1 & 2 is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving performance and operation Reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches Details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and reviews advanced transport simulation approaches, degradation modelling and experimental monitoring techniques


Book Synopsis Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology by : Christoph Hartnig

Download or read book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology written by Christoph Hartnig and published by Elsevier. This book was released on 2012-03-19 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques.With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology Volumes 1 & 2 is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving performance and operation Reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches Details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and reviews advanced transport simulation approaches, degradation modelling and experimental monitoring techniques


Direct Alcohol Fuel Cells

Direct Alcohol Fuel Cells

Author: Horacio R. Corti

Publisher: Springer Science & Business Media

Published: 2013-12-02

Total Pages: 377

ISBN-13: 9400777086

DOWNLOAD EBOOK

Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications begins with an introductory overview of direct alcohol fuel cells (DAFC); it focuses on the main goals and challenges in the areas of materials development, performance, and commercialization. The preparation and the properties of the anodic catalysts used for the oxidation of methanol, higher alcohols, and alcohol tolerant cathodes are then described. The membranes used as proton conductors in DAFC are examined, as well as alkaline membranes, focusing on the electrical conductivity and alcohol permeability. The use of different kinds of carbon materials as catalyst supports, gas diffusion layers, and current collectors in DAFC is also discussed. State of the art of the modeling is used to estimate performance and durability. The closing chapter reviews the use of DAFC in portable equipment and mobile devices and features a detailed discussion on the mechanisms of component degradation which limits their durability. This book is written to facilitate the understanding of DAFC technology, applications, and future challenges. It is an excellent introduction for electrochemical and material engineers interested in small fuel cells as portable energy sources, scientists focused on materials science for energy production and storage, as well as policy-makers in the area of renewable energies.


Book Synopsis Direct Alcohol Fuel Cells by : Horacio R. Corti

Download or read book Direct Alcohol Fuel Cells written by Horacio R. Corti and published by Springer Science & Business Media. This book was released on 2013-12-02 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications begins with an introductory overview of direct alcohol fuel cells (DAFC); it focuses on the main goals and challenges in the areas of materials development, performance, and commercialization. The preparation and the properties of the anodic catalysts used for the oxidation of methanol, higher alcohols, and alcohol tolerant cathodes are then described. The membranes used as proton conductors in DAFC are examined, as well as alkaline membranes, focusing on the electrical conductivity and alcohol permeability. The use of different kinds of carbon materials as catalyst supports, gas diffusion layers, and current collectors in DAFC is also discussed. State of the art of the modeling is used to estimate performance and durability. The closing chapter reviews the use of DAFC in portable equipment and mobile devices and features a detailed discussion on the mechanisms of component degradation which limits their durability. This book is written to facilitate the understanding of DAFC technology, applications, and future challenges. It is an excellent introduction for electrochemical and material engineers interested in small fuel cells as portable energy sources, scientists focused on materials science for energy production and storage, as well as policy-makers in the area of renewable energies.