Electrons and Phonons

Electrons and Phonons

Author: J.M. Ziman

Publisher: Oxford University Press

Published: 2001-02

Total Pages: 572

ISBN-13: 9780198507796

DOWNLOAD EBOOK

This is a classic text of its time in condensed matter physics.


Book Synopsis Electrons and Phonons by : J.M. Ziman

Download or read book Electrons and Phonons written by J.M. Ziman and published by Oxford University Press. This book was released on 2001-02 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a classic text of its time in condensed matter physics.


Introduction to Phonons and Electrons

Introduction to Phonons and Electrons

Author: Liang-fu Lou

Publisher: World Scientific

Published: 2003

Total Pages: 240

ISBN-13: 9789812384614

DOWNLOAD EBOOK

This book focuses on phonons and electrons, which the student needs to learn first in solid state physics. The required quantum theory and statistical physics are derived from scratch. Systematic in structure and tutorial in style, the treatment is filled with detailed mathematical steps and physical interpretations. This approach ensures a self-sufficient content for easier teaching and learning. The objective is to introduce the concepts of phonons and electrons in a more rigorous and yet clearer way, so that the student does not need to relearn them in more advanced courses. Examples are the transition from lattice vibrations to phonons and from free electrons to energy bands.The book can be used as the beginning module of a one-year introductory course on solid state physics, and the instructor will have a chance to choose additional topics. Alternatively, it can be taught as a stand-alone text for building the most-needed foundation in just one semester.


Book Synopsis Introduction to Phonons and Electrons by : Liang-fu Lou

Download or read book Introduction to Phonons and Electrons written by Liang-fu Lou and published by World Scientific. This book was released on 2003 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on phonons and electrons, which the student needs to learn first in solid state physics. The required quantum theory and statistical physics are derived from scratch. Systematic in structure and tutorial in style, the treatment is filled with detailed mathematical steps and physical interpretations. This approach ensures a self-sufficient content for easier teaching and learning. The objective is to introduce the concepts of phonons and electrons in a more rigorous and yet clearer way, so that the student does not need to relearn them in more advanced courses. Examples are the transition from lattice vibrations to phonons and from free electrons to energy bands.The book can be used as the beginning module of a one-year introductory course on solid state physics, and the instructor will have a chance to choose additional topics. Alternatively, it can be taught as a stand-alone text for building the most-needed foundation in just one semester.


Electrons and Phonons in Layered Crystal Structures

Electrons and Phonons in Layered Crystal Structures

Author: T.J. Wieting

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 483

ISBN-13: 9400993706

DOWNLOAD EBOOK

This volume is devoted to the electron and phonon energy states of inorganic layered crystals. The distinctive feature of these low-dimensional materials is their easy mechanical cleavage along planes parallel to the layers. This feature implies that the chemical binding within each layer is much stronger than the binding between layers and that some, but not necessarily all, physical properties of layered crystals have two-dimensional character. In Wyckoff's Crystal Structures, SiC and related com pounds are regarded as layered structures, because their atomic layers are alternately stacked according to the requirements of cubic and hexagonal close-packing. How ever, the uniform (tetrahedral) coordination of the atoms in these compounds excludes the kind of structural anisotropy that is fundamental to the materials dis cussed in this volume. An individual layer of a layered crystal may be composed of either a single sheet of atoms, as in graphite, or a set of up to five atomic sheets, as in Bi2 Te3' A layer may also have more complicated arrangements of the atoms, as we find for example in Sb S . But the unique feature common to all these materials is 2 3 the structural anisotropy, which directly affects their electronic and vibrational properties. The nature of the weak interlayer coupling is not very well understood, despite the frequent attribution of the coupling in the literature to van der Waals forces. Two main facts, however, have emerged from all studies.


Book Synopsis Electrons and Phonons in Layered Crystal Structures by : T.J. Wieting

Download or read book Electrons and Phonons in Layered Crystal Structures written by T.J. Wieting and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is devoted to the electron and phonon energy states of inorganic layered crystals. The distinctive feature of these low-dimensional materials is their easy mechanical cleavage along planes parallel to the layers. This feature implies that the chemical binding within each layer is much stronger than the binding between layers and that some, but not necessarily all, physical properties of layered crystals have two-dimensional character. In Wyckoff's Crystal Structures, SiC and related com pounds are regarded as layered structures, because their atomic layers are alternately stacked according to the requirements of cubic and hexagonal close-packing. How ever, the uniform (tetrahedral) coordination of the atoms in these compounds excludes the kind of structural anisotropy that is fundamental to the materials dis cussed in this volume. An individual layer of a layered crystal may be composed of either a single sheet of atoms, as in graphite, or a set of up to five atomic sheets, as in Bi2 Te3' A layer may also have more complicated arrangements of the atoms, as we find for example in Sb S . But the unique feature common to all these materials is 2 3 the structural anisotropy, which directly affects their electronic and vibrational properties. The nature of the weak interlayer coupling is not very well understood, despite the frequent attribution of the coupling in the literature to van der Waals forces. Two main facts, however, have emerged from all studies.


Theoretical Modelling of Semiconductor Surfaces

Theoretical Modelling of Semiconductor Surfaces

Author:

Publisher:

Published:

Total Pages:

ISBN-13: 9814496758

DOWNLOAD EBOOK


Book Synopsis Theoretical Modelling of Semiconductor Surfaces by :

Download or read book Theoretical Modelling of Semiconductor Surfaces written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Quantum Kinetic Theory and Applications

Quantum Kinetic Theory and Applications

Author: F. T. Vasʹko

Publisher: Springer Science & Business Media

Published: 2005-08-16

Total Pages: 802

ISBN-13: 9780387260280

DOWNLOAD EBOOK

This lecture-style monograph is addressed to several categories of readers. First, it will be useful for graduate students studying theory. Second, the topics covered should be interesting for postgraduate students of various specializations. Third, the researchers who want to understand the background of modern theoretical issues in more detail can find a number of useful results here. The phenomena covered involve kinetics of electron, phonon, and photon systems in solids. The dynamical properties and interactions of electrons, phonons, and photons are briefly described in Chapter 1. Further, in Chapters 2-8, the authors present the main theoretical methods: linear response theory, various kinetic equations for the quasiparticles under consideration, and diagram technique. The presentation of the key approaches is always accompanied by solutions of concrete problems to illustrate ways to apply the theory. The remaining chapters are devoted to various manifestations of quantum transport in solids. The choice of particular topics is determined by their scientific importance and methodological value. The 267 supplementary problems presented in the ends of chapters are offered to guide the reader in self-study. Focusing attention on the methodological aspects and discussing a great diversity of kinetic phenomena, in keeping with the guiding principle "a method is more important than a result", the authors minimize both detailed discussion of physical mechanisms of the phenomena considered and comparison of theoretical results to experimental data.


Book Synopsis Quantum Kinetic Theory and Applications by : F. T. Vasʹko

Download or read book Quantum Kinetic Theory and Applications written by F. T. Vasʹko and published by Springer Science & Business Media. This book was released on 2005-08-16 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture-style monograph is addressed to several categories of readers. First, it will be useful for graduate students studying theory. Second, the topics covered should be interesting for postgraduate students of various specializations. Third, the researchers who want to understand the background of modern theoretical issues in more detail can find a number of useful results here. The phenomena covered involve kinetics of electron, phonon, and photon systems in solids. The dynamical properties and interactions of electrons, phonons, and photons are briefly described in Chapter 1. Further, in Chapters 2-8, the authors present the main theoretical methods: linear response theory, various kinetic equations for the quasiparticles under consideration, and diagram technique. The presentation of the key approaches is always accompanied by solutions of concrete problems to illustrate ways to apply the theory. The remaining chapters are devoted to various manifestations of quantum transport in solids. The choice of particular topics is determined by their scientific importance and methodological value. The 267 supplementary problems presented in the ends of chapters are offered to guide the reader in self-study. Focusing attention on the methodological aspects and discussing a great diversity of kinetic phenomena, in keeping with the guiding principle "a method is more important than a result", the authors minimize both detailed discussion of physical mechanisms of the phenomena considered and comparison of theoretical results to experimental data.


Electron Phonon Interactions

Electron Phonon Interactions

Author: Albert Rose

Publisher: World Scientific

Published: 1989

Total Pages: 200

ISBN-13: 9789971506353

DOWNLOAD EBOOK

This monograph is a radical departure from the conventional quantum mechanical approach to electron-phonon interactions. It translates the customary quantum mechanical analysis of the electron-phonon interactions carried out in Fourier space into a predominantly classical analysis carried out in real space. Various electron-phonon interactions such as the polar and nonpolar optical phonons, acoustic phonons that interact via deformation potential and via the piezoelectric effect and phonons in metals, are treated in this monograph by a single, relatively simple ?classical? model. This model is shown to apply to electron interactions with the deep lying X-ray levels of atoms, with plasmons and with Cerenkov radiation. The unifying concept that applies to all of these phenomena is a new definition of a coupling constant. The essentially classical interaction of an electron with its surrounding is clearly brought out to be the cause of spontaneous emission of phonons. The same concept also applies to the case of spontaneous emission of photons. While the bulk of this monograph deals with quanta of phonons and quanta of photons, a discussion of the acousto electric effect which is a purely classical phenomenon is presented. The newly defined coupling constant turns out to be valid too for this discussion. This universality of the coupling constant goes far beyond. It is equally applicable to amorphous materials. This significant application gives an analytic formulation of mobility in amorphous materials.


Book Synopsis Electron Phonon Interactions by : Albert Rose

Download or read book Electron Phonon Interactions written by Albert Rose and published by World Scientific. This book was released on 1989 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a radical departure from the conventional quantum mechanical approach to electron-phonon interactions. It translates the customary quantum mechanical analysis of the electron-phonon interactions carried out in Fourier space into a predominantly classical analysis carried out in real space. Various electron-phonon interactions such as the polar and nonpolar optical phonons, acoustic phonons that interact via deformation potential and via the piezoelectric effect and phonons in metals, are treated in this monograph by a single, relatively simple ?classical? model. This model is shown to apply to electron interactions with the deep lying X-ray levels of atoms, with plasmons and with Cerenkov radiation. The unifying concept that applies to all of these phenomena is a new definition of a coupling constant. The essentially classical interaction of an electron with its surrounding is clearly brought out to be the cause of spontaneous emission of phonons. The same concept also applies to the case of spontaneous emission of photons. While the bulk of this monograph deals with quanta of phonons and quanta of photons, a discussion of the acousto electric effect which is a purely classical phenomenon is presented. The newly defined coupling constant turns out to be valid too for this discussion. This universality of the coupling constant goes far beyond. It is equally applicable to amorphous materials. This significant application gives an analytic formulation of mobility in amorphous materials.


Electrons and phonons: the theory of transport phenomena in solids

Electrons and phonons: the theory of transport phenomena in solids

Author: John Michael Ziman

Publisher:

Published: 1972

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Electrons and phonons: the theory of transport phenomena in solids by : John Michael Ziman

Download or read book Electrons and phonons: the theory of transport phenomena in solids written by John Michael Ziman and published by . This book was released on 1972 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Electrons and Phonons

Electrons and Phonons

Author: Ziman

Publisher:

Published: 1979

Total Pages: 554

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Electrons and Phonons by : Ziman

Download or read book Electrons and Phonons written by Ziman and published by . This book was released on 1979 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Introduction to Phonons and Electrons

Introduction to Phonons and Electrons

Author: Liang-fu Lou

Publisher: World Scientific

Published: 2003-08-12

Total Pages: 236

ISBN-13: 9814485535

DOWNLOAD EBOOK

' This book focuses on phonons and electrons, which the student needs to learn first in solid state physics. The required quantum theory and statistical physics are derived from scratch. Systematic in structure and tutorial in style, the treatment is filled with detailed mathematical steps and physical interpretations. This approach ensures a self-sufficient content for easier teaching and learning. The objective is to introduce the concepts of phonons and electrons in a more rigorous and yet clearer way, so that the student does not need to relearn them in more advanced courses. Examples are the transition from lattice vibrations to phonons and from free electrons to energy bands. The book can be used as the beginning module of a one-year introductory course on solid state physics, and the instructor will have a chance to choose additional topics. Alternatively, it can be taught as a stand-alone text for building the most-needed foundation in just one semester. Contents:Crystal StructureReciprocal Lattice and X-Ray DiffractionLattice Vibrations and PhononsThermal Properties of InsulatorsFree Electron Fermi GasElectron Energy Bands Readership: Undergraduates, graduate students and researchers in physics, materials science and electronic devices. Keywords:Crystal Symmetries;Lattice Vibrations;Phonons;Free Electrons;X-Ray DiffractionReviews:“The book is focused, rigorous, and self sufficient. It is filled with meticulous details. I am pleased to see that many questions the students may have when learning these subjects are answered in this book … I strongly recommend it to both the teacher and students.”J J Chang Professor of Physics Wayne State University “The presentation is done well and the author has an easy-to-read style that is almost chatty … Overall, I think that the author has succeeded in providing a book for a niche where the beginning student of solid-state physics wants a self-contained book without having to go to another textbook.”MRS Bulletin '


Book Synopsis Introduction to Phonons and Electrons by : Liang-fu Lou

Download or read book Introduction to Phonons and Electrons written by Liang-fu Lou and published by World Scientific. This book was released on 2003-08-12 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: ' This book focuses on phonons and electrons, which the student needs to learn first in solid state physics. The required quantum theory and statistical physics are derived from scratch. Systematic in structure and tutorial in style, the treatment is filled with detailed mathematical steps and physical interpretations. This approach ensures a self-sufficient content for easier teaching and learning. The objective is to introduce the concepts of phonons and electrons in a more rigorous and yet clearer way, so that the student does not need to relearn them in more advanced courses. Examples are the transition from lattice vibrations to phonons and from free electrons to energy bands. The book can be used as the beginning module of a one-year introductory course on solid state physics, and the instructor will have a chance to choose additional topics. Alternatively, it can be taught as a stand-alone text for building the most-needed foundation in just one semester. Contents:Crystal StructureReciprocal Lattice and X-Ray DiffractionLattice Vibrations and PhononsThermal Properties of InsulatorsFree Electron Fermi GasElectron Energy Bands Readership: Undergraduates, graduate students and researchers in physics, materials science and electronic devices. Keywords:Crystal Symmetries;Lattice Vibrations;Phonons;Free Electrons;X-Ray DiffractionReviews:“The book is focused, rigorous, and self sufficient. It is filled with meticulous details. I am pleased to see that many questions the students may have when learning these subjects are answered in this book … I strongly recommend it to both the teacher and students.”J J Chang Professor of Physics Wayne State University “The presentation is done well and the author has an easy-to-read style that is almost chatty … Overall, I think that the author has succeeded in providing a book for a niche where the beginning student of solid-state physics wants a self-contained book without having to go to another textbook.”MRS Bulletin '


Nano/Microscale Heat Transfer

Nano/Microscale Heat Transfer

Author: Zhuomin M. Zhang

Publisher: Springer Nature

Published: 2020-06-23

Total Pages: 780

ISBN-13: 3030450392

DOWNLOAD EBOOK

This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.


Book Synopsis Nano/Microscale Heat Transfer by : Zhuomin M. Zhang

Download or read book Nano/Microscale Heat Transfer written by Zhuomin M. Zhang and published by Springer Nature. This book was released on 2020-06-23 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.