Emerging Topics on Differential Geometry and Graph Theory

Emerging Topics on Differential Geometry and Graph Theory

Author: Lucas Bernard

Publisher: Nova Science Publishers

Published: 2014-05-14

Total Pages: 429

ISBN-13: 9781611220698

DOWNLOAD EBOOK


Book Synopsis Emerging Topics on Differential Geometry and Graph Theory by : Lucas Bernard

Download or read book Emerging Topics on Differential Geometry and Graph Theory written by Lucas Bernard and published by Nova Science Publishers. This book was released on 2014-05-14 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Emerging Topics on Differential Geometry and Graph Theory

Emerging Topics on Differential Geometry and Graph Theory

Author: Lucas Bernard

Publisher:

Published: 2010

Total Pages: 0

ISBN-13: 9781607410119

DOWNLOAD EBOOK

Differential geometry is a mathematical discipline that uses the methods of differential and integral calculus to study problems in geometry. Graph theory is also a growing area in mathematical research. In mathematics and computer science, graph theory is the study of mathematical structures used to model pairwise relations between objects from a certain collection. This book presents various theories and applications in both of these mathematical fields. Included are the concepts of dominating sets, one of the most widely studied concepts in graph theory, some current developments of graph theory in the fields of planar linkage mechanisms and geared linkage mechanisms, lie algebras and the application of CR Hamiltonian flows to the deformation theory of CR structures.


Book Synopsis Emerging Topics on Differential Geometry and Graph Theory by : Lucas Bernard

Download or read book Emerging Topics on Differential Geometry and Graph Theory written by Lucas Bernard and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry is a mathematical discipline that uses the methods of differential and integral calculus to study problems in geometry. Graph theory is also a growing area in mathematical research. In mathematics and computer science, graph theory is the study of mathematical structures used to model pairwise relations between objects from a certain collection. This book presents various theories and applications in both of these mathematical fields. Included are the concepts of dominating sets, one of the most widely studied concepts in graph theory, some current developments of graph theory in the fields of planar linkage mechanisms and geared linkage mechanisms, lie algebras and the application of CR Hamiltonian flows to the deformation theory of CR structures.


Discrete Differential Geometry

Discrete Differential Geometry

Author: Alexander I. Bobenko

Publisher: American Mathematical Society

Published: 2023-09-14

Total Pages: 432

ISBN-13: 1470474565

DOWNLOAD EBOOK

An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.


Book Synopsis Discrete Differential Geometry by : Alexander I. Bobenko

Download or read book Discrete Differential Geometry written by Alexander I. Bobenko and published by American Mathematical Society. This book was released on 2023-09-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.


Foundations of Relational Realism

Foundations of Relational Realism

Author: Michael Epperson

Publisher: Lexington Books

Published: 2013-06-20

Total Pages: 441

ISBN-13: 0739180339

DOWNLOAD EBOOK

If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed the limits of intuitive vision, if not intuitive comprehension. For many physicists and philosophers, however, the currently fashionable tendency toward exotic interpretation of the theoretical formalism is recognized not as a mark of ascent for the tower of physics, but rather an indicator of sway—one that must be dampened rather than encouraged if practical progress is to continue. In this unique two-part volume, designed to be comprehensible to both specialists and non-specialists, the authors chart out a pathway forward by identifying the central deficiency in most interpretations of quantum mechanics: That in its conventional, metrical depiction of extension, inherited from the Enlightenment, objects are characterized as fundamental to relations—i.e., such that relations presuppose objects but objects do not presuppose relations. The authors, by contrast, argue that quantum mechanics exemplifies the fact that physical extensiveness is fundamentally topological rather than metrical, with its proper logico-mathematical framework being category theoretic rather than set theoretic. By this thesis, extensiveness fundamentally entails not only relations of objects, but also relations of relations. Thus, the fundamental quanta of quantum physics are properly defined as units of logico-physical relation rather than merely units of physical relata as is the current convention. Objects are always understood as relata, and likewise relations are always understood objectively. In this way, objects and relations are coherently defined as mutually implicative. The conventional notion of a history as “a story about fundamental objects” is thereby reversed, such that the classical “objects” become the story by which we understand physical systems that are fundamentally histories of quantum events. These are just a few of the novel critical claims explored in this volume—claims whose exemplification in quantum mechanics will, the authors argue, serve more broadly as foundational principles for the philosophy of nature as it evolves through the twenty-first century and beyond.


Book Synopsis Foundations of Relational Realism by : Michael Epperson

Download or read book Foundations of Relational Realism written by Michael Epperson and published by Lexington Books. This book was released on 2013-06-20 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed the limits of intuitive vision, if not intuitive comprehension. For many physicists and philosophers, however, the currently fashionable tendency toward exotic interpretation of the theoretical formalism is recognized not as a mark of ascent for the tower of physics, but rather an indicator of sway—one that must be dampened rather than encouraged if practical progress is to continue. In this unique two-part volume, designed to be comprehensible to both specialists and non-specialists, the authors chart out a pathway forward by identifying the central deficiency in most interpretations of quantum mechanics: That in its conventional, metrical depiction of extension, inherited from the Enlightenment, objects are characterized as fundamental to relations—i.e., such that relations presuppose objects but objects do not presuppose relations. The authors, by contrast, argue that quantum mechanics exemplifies the fact that physical extensiveness is fundamentally topological rather than metrical, with its proper logico-mathematical framework being category theoretic rather than set theoretic. By this thesis, extensiveness fundamentally entails not only relations of objects, but also relations of relations. Thus, the fundamental quanta of quantum physics are properly defined as units of logico-physical relation rather than merely units of physical relata as is the current convention. Objects are always understood as relata, and likewise relations are always understood objectively. In this way, objects and relations are coherently defined as mutually implicative. The conventional notion of a history as “a story about fundamental objects” is thereby reversed, such that the classical “objects” become the story by which we understand physical systems that are fundamentally histories of quantum events. These are just a few of the novel critical claims explored in this volume—claims whose exemplification in quantum mechanics will, the authors argue, serve more broadly as foundational principles for the philosophy of nature as it evolves through the twenty-first century and beyond.


Topics in differential geometry

Topics in differential geometry

Author: János Szenthe

Publisher:

Published: 1988

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Topics in differential geometry by : János Szenthe

Download or read book Topics in differential geometry written by János Szenthe and published by . This book was released on 1988 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


New Horizons In Differential Geometry And Its Related Fields

New Horizons In Differential Geometry And Its Related Fields

Author: Toshiaki Adachi

Publisher: World Scientific

Published: 2022-04-07

Total Pages: 257

ISBN-13: 9811248117

DOWNLOAD EBOOK

This volume presents recent developments in geometric structures on Riemannian manifolds and their discretizations. With chapters written by recognized experts, these discussions focus on contact structures, Kähler structures, fiber bundle structures and Einstein metrics. It also contains works on the geometric approach on coding theory.For researchers and students, this volume forms an invaluable source to learn about these subjects that are not only in the field of differential geometry but also in other wide related areas. It promotes and deepens the study of geometric structures.


Book Synopsis New Horizons In Differential Geometry And Its Related Fields by : Toshiaki Adachi

Download or read book New Horizons In Differential Geometry And Its Related Fields written by Toshiaki Adachi and published by World Scientific. This book was released on 2022-04-07 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents recent developments in geometric structures on Riemannian manifolds and their discretizations. With chapters written by recognized experts, these discussions focus on contact structures, Kähler structures, fiber bundle structures and Einstein metrics. It also contains works on the geometric approach on coding theory.For researchers and students, this volume forms an invaluable source to learn about these subjects that are not only in the field of differential geometry but also in other wide related areas. It promotes and deepens the study of geometric structures.


Topics in Differential Geometry: A New Approach Using D-Differentiation

Topics in Differential Geometry: A New Approach Using D-Differentiation

Author: Donal J. Hurley

Publisher: Springer Science & Business Media

Published: 2002

Total Pages: 192

ISBN-13: 9781852334918

DOWNLOAD EBOOK

D-differentiation is a unified operation that enables aspects of differential geometry to be developed and presented from a new perspective. This book is the first comprehensive and self-contained treatment of this new method. It demonstrates, concisely but without sacrificing rigour or intelligibility, how even elementary concepts in differential geometry can be reformulated to obtain new and valuable insights. In addition, D-differentiation has applications in several areas of physics, such as classical mechanics, solid-state physics and general relativity. This book will prove useful to all users of D-differentiation - from advanced graduate students onwards - and to those researching into new approaches to some branches of physics and mathematics.


Book Synopsis Topics in Differential Geometry: A New Approach Using D-Differentiation by : Donal J. Hurley

Download or read book Topics in Differential Geometry: A New Approach Using D-Differentiation written by Donal J. Hurley and published by Springer Science & Business Media. This book was released on 2002 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: D-differentiation is a unified operation that enables aspects of differential geometry to be developed and presented from a new perspective. This book is the first comprehensive and self-contained treatment of this new method. It demonstrates, concisely but without sacrificing rigour or intelligibility, how even elementary concepts in differential geometry can be reformulated to obtain new and valuable insights. In addition, D-differentiation has applications in several areas of physics, such as classical mechanics, solid-state physics and general relativity. This book will prove useful to all users of D-differentiation - from advanced graduate students onwards - and to those researching into new approaches to some branches of physics and mathematics.


Thirty Essays on Geometric Graph Theory

Thirty Essays on Geometric Graph Theory

Author: János Pach

Publisher: Springer Science & Business Media

Published: 2012-12-15

Total Pages: 610

ISBN-13: 1461401100

DOWNLOAD EBOOK

In many applications of graph theory, graphs are regarded as geometric objects drawn in the plane or in some other surface. The traditional methods of "abstract" graph theory are often incapable of providing satisfactory answers to questions arising in such applications. In the past couple of decades, many powerful new combinatorial and topological techniques have been developed to tackle these problems. Today geometric graph theory is a burgeoning field with many striking results and appealing open questions. This contributed volume contains thirty original survey and research papers on important recent developments in geometric graph theory. The contributions were thoroughly reviewed and written by excellent researchers in this field.


Book Synopsis Thirty Essays on Geometric Graph Theory by : János Pach

Download or read book Thirty Essays on Geometric Graph Theory written by János Pach and published by Springer Science & Business Media. This book was released on 2012-12-15 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many applications of graph theory, graphs are regarded as geometric objects drawn in the plane or in some other surface. The traditional methods of "abstract" graph theory are often incapable of providing satisfactory answers to questions arising in such applications. In the past couple of decades, many powerful new combinatorial and topological techniques have been developed to tackle these problems. Today geometric graph theory is a burgeoning field with many striking results and appealing open questions. This contributed volume contains thirty original survey and research papers on important recent developments in geometric graph theory. The contributions were thoroughly reviewed and written by excellent researchers in this field.


Topics in Modern Differential Geometry

Topics in Modern Differential Geometry

Author: Stefan Haesen

Publisher: Springer

Published: 2016-12-21

Total Pages: 284

ISBN-13: 9462392404

DOWNLOAD EBOOK

A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.


Book Synopsis Topics in Modern Differential Geometry by : Stefan Haesen

Download or read book Topics in Modern Differential Geometry written by Stefan Haesen and published by Springer. This book was released on 2016-12-21 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.


Global Riemannian Geometry: Curvature and Topology

Global Riemannian Geometry: Curvature and Topology

Author: Ana Hurtado

Publisher: Springer Nature

Published: 2020-08-19

Total Pages: 121

ISBN-13: 3030552934

DOWNLOAD EBOOK

This book contains a clear exposition of two contemporary topics in modern differential geometry: distance geometric analysis on manifolds, in particular, comparison theory for distance functions in spaces which have well defined bounds on their curvature the application of the Lichnerowicz formula for Dirac operators to the study of Gromov's invariants to measure the K-theoretic size of a Riemannian manifold. It is intended for both graduate students and researchers.


Book Synopsis Global Riemannian Geometry: Curvature and Topology by : Ana Hurtado

Download or read book Global Riemannian Geometry: Curvature and Topology written by Ana Hurtado and published by Springer Nature. This book was released on 2020-08-19 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a clear exposition of two contemporary topics in modern differential geometry: distance geometric analysis on manifolds, in particular, comparison theory for distance functions in spaces which have well defined bounds on their curvature the application of the Lichnerowicz formula for Dirac operators to the study of Gromov's invariants to measure the K-theoretic size of a Riemannian manifold. It is intended for both graduate students and researchers.