Engineering Applications of Unsteady Fluid Flow

Engineering Applications of Unsteady Fluid Flow

Author: P. H. Azoury

Publisher:

Published: 1992

Total Pages: 416

ISBN-13:

DOWNLOAD EBOOK

Due to recent and continuing advances in computational fluid dynamics, programs are now available for speedy and detailed treatment of problems involving nonstationary fluid dynamics. Explains the basic ideas underlying the use of unsteady fluid flow and explores new ideas, processes and devices taking place in this rapidly developing field. Covers such diverse topics as tidal wave power, wind energy conversion systems, and thrust-augmenting pulsed ejectors. Offers numerous illustrated examples and applications to both inspire and challenge the reader.


Book Synopsis Engineering Applications of Unsteady Fluid Flow by : P. H. Azoury

Download or read book Engineering Applications of Unsteady Fluid Flow written by P. H. Azoury and published by . This book was released on 1992 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to recent and continuing advances in computational fluid dynamics, programs are now available for speedy and detailed treatment of problems involving nonstationary fluid dynamics. Explains the basic ideas underlying the use of unsteady fluid flow and explores new ideas, processes and devices taking place in this rapidly developing field. Covers such diverse topics as tidal wave power, wind energy conversion systems, and thrust-augmenting pulsed ejectors. Offers numerous illustrated examples and applications to both inspire and challenge the reader.


Engineering Applications of Unsteady Fluid Flow

Engineering Applications of Unsteady Fluid Flow

Author: Pierre H. Azoury

Publisher:

Published:

Total Pages: 401

ISBN-13: 9780598031396

DOWNLOAD EBOOK


Book Synopsis Engineering Applications of Unsteady Fluid Flow by : Pierre H. Azoury

Download or read book Engineering Applications of Unsteady Fluid Flow written by Pierre H. Azoury and published by . This book was released on with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Practical Fluid Mechanics for Engineering Applications

Practical Fluid Mechanics for Engineering Applications

Author: Bloomer

Publisher: CRC Press

Published: 1999-09-21

Total Pages: 412

ISBN-13: 9780824795757

DOWNLOAD EBOOK

Provides the definition, equations and derivations that characterize the foundation of fluid mechanics utilizing minimum mathematics required for clarity yet retaining academic integrity. The text focuses on pipe flow, flow in open channels, flow measurement methods, forces on immersed objects, and unsteady flow. It includes over 50 fully solved problems to illustrate each concepts.;Three chapters of the book are reprinted from Fundamental Fluid Mechanics for the Practical Engineer by James W. Murdock.


Book Synopsis Practical Fluid Mechanics for Engineering Applications by : Bloomer

Download or read book Practical Fluid Mechanics for Engineering Applications written by Bloomer and published by CRC Press. This book was released on 1999-09-21 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides the definition, equations and derivations that characterize the foundation of fluid mechanics utilizing minimum mathematics required for clarity yet retaining academic integrity. The text focuses on pipe flow, flow in open channels, flow measurement methods, forces on immersed objects, and unsteady flow. It includes over 50 fully solved problems to illustrate each concepts.;Three chapters of the book are reprinted from Fundamental Fluid Mechanics for the Practical Engineer by James W. Murdock.


Unsteady Computational Fluid Dynamics in Aeronautics

Unsteady Computational Fluid Dynamics in Aeronautics

Author: P.G. Tucker

Publisher: Springer Science & Business Media

Published: 2013-08-30

Total Pages: 432

ISBN-13: 9400770499

DOWNLOAD EBOOK

The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France


Book Synopsis Unsteady Computational Fluid Dynamics in Aeronautics by : P.G. Tucker

Download or read book Unsteady Computational Fluid Dynamics in Aeronautics written by P.G. Tucker and published by Springer Science & Business Media. This book was released on 2013-08-30 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France


Fluid Mechanics for Engineers

Fluid Mechanics for Engineers

Author: Meinhard T. Schobeiri

Publisher: Springer Science & Business Media

Published: 2010-03-27

Total Pages: 517

ISBN-13: 3642115942

DOWNLOAD EBOOK

The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.


Book Synopsis Fluid Mechanics for Engineers by : Meinhard T. Schobeiri

Download or read book Fluid Mechanics for Engineers written by Meinhard T. Schobeiri and published by Springer Science & Business Media. This book was released on 2010-03-27 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.


Theory and Applications of Viscous Fluid Flows

Theory and Applications of Viscous Fluid Flows

Author: Radyadour Kh. Zeytounian

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 498

ISBN-13: 3662104474

DOWNLOAD EBOOK

This book closes the gap between standard undergraduate texts on fluid mechanics and monographical publications devoted to specific aspects of viscous fluid flows. Each chapter serves as an introduction to a special topic that will facilitate later application by readers in their research work.


Book Synopsis Theory and Applications of Viscous Fluid Flows by : Radyadour Kh. Zeytounian

Download or read book Theory and Applications of Viscous Fluid Flows written by Radyadour Kh. Zeytounian and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book closes the gap between standard undergraduate texts on fluid mechanics and monographical publications devoted to specific aspects of viscous fluid flows. Each chapter serves as an introduction to a special topic that will facilitate later application by readers in their research work.


Mathematical Modeling of Unsteady Inviscid Flows

Mathematical Modeling of Unsteady Inviscid Flows

Author: Jeff D. Eldredge

Publisher: Springer

Published: 2019-07-22

Total Pages: 461

ISBN-13: 303018319X

DOWNLOAD EBOOK

This book builds inviscid flow analysis from an undergraduate-level treatment of potential flow to the level required for research. The tools covered in this book allow the reader to develop physics-based mathematical models for a variety of flows, including attached and separated flows past wings, fins, and blades of various shapes undergoing arbitrary motions. The book covers all of the ingredients of these models: the solution of potential flows about arbitrary body shapes in two- and three-dimensional contexts, with a particular focus on conformal mapping in the plane; the decomposition of the flow into contributions from ambient vorticity and body motion; generalized edge conditions, of which the Kutta condition is a special case; and the calculation of force and moment, with extensive treatments of added mass and the influence of fluid vorticity. The book also contains an extensive primer with all of the necessary mathematical tools. The concepts are demonstrated on several example problems, both classical and modern.


Book Synopsis Mathematical Modeling of Unsteady Inviscid Flows by : Jeff D. Eldredge

Download or read book Mathematical Modeling of Unsteady Inviscid Flows written by Jeff D. Eldredge and published by Springer. This book was released on 2019-07-22 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book builds inviscid flow analysis from an undergraduate-level treatment of potential flow to the level required for research. The tools covered in this book allow the reader to develop physics-based mathematical models for a variety of flows, including attached and separated flows past wings, fins, and blades of various shapes undergoing arbitrary motions. The book covers all of the ingredients of these models: the solution of potential flows about arbitrary body shapes in two- and three-dimensional contexts, with a particular focus on conformal mapping in the plane; the decomposition of the flow into contributions from ambient vorticity and body motion; generalized edge conditions, of which the Kutta condition is a special case; and the calculation of force and moment, with extensive treatments of added mass and the influence of fluid vorticity. The book also contains an extensive primer with all of the necessary mathematical tools. The concepts are demonstrated on several example problems, both classical and modern.


Unsteady Viscous Flows

Unsteady Viscous Flows

Author: Demetri P. Telionis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 429

ISBN-13: 3642885675

DOWNLOAD EBOOK

Most of the fundamental concepts of unsteady viscous flows have been known since the early part of the century. However, the past decade has seen an unprecedented number of publications in this area. In this monograph I try to connect materials of earlier contributions and synthesize them into a comprehensive entity. One of the main purposes of a monograph, in my opinion, is to fit together in a comprehensive way scattered contributions that provide fragmented information to the readers. The collection of such contributions should be presented in a unified way; continuity of thought and logical sequence of the presentation of ideas and methods are essential. The reader should be able to follow through without having to resort to other references, something that is unavoidable in the case of a research paper or even a review paper. Many of the solutions discussed in the literature address specific practical problems. In fact, in the process of collecting information, I discovered independent lines of investigations, dealing with the same physical problem, but inspired by different practical applications. For example, I found that two groups of investigators have been studying independently the response of a viscous layer to a harmonic external disturbance. One group is con cerned with mass transport and the transport of sediment over the bottom of the ocean, and the other is interested in the aerodynamics of lifting surfaces in harmonically changing environments.


Book Synopsis Unsteady Viscous Flows by : Demetri P. Telionis

Download or read book Unsteady Viscous Flows written by Demetri P. Telionis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the fundamental concepts of unsteady viscous flows have been known since the early part of the century. However, the past decade has seen an unprecedented number of publications in this area. In this monograph I try to connect materials of earlier contributions and synthesize them into a comprehensive entity. One of the main purposes of a monograph, in my opinion, is to fit together in a comprehensive way scattered contributions that provide fragmented information to the readers. The collection of such contributions should be presented in a unified way; continuity of thought and logical sequence of the presentation of ideas and methods are essential. The reader should be able to follow through without having to resort to other references, something that is unavoidable in the case of a research paper or even a review paper. Many of the solutions discussed in the literature address specific practical problems. In fact, in the process of collecting information, I discovered independent lines of investigations, dealing with the same physical problem, but inspired by different practical applications. For example, I found that two groups of investigators have been studying independently the response of a viscous layer to a harmonic external disturbance. One group is con cerned with mass transport and the transport of sediment over the bottom of the ocean, and the other is interested in the aerodynamics of lifting surfaces in harmonically changing environments.


Unsteady Flow in Open Channels

Unsteady Flow in Open Channels

Author: Jurjen A. Battjes

Publisher: Cambridge University Press

Published: 2017-02-16

Total Pages: 309

ISBN-13: 1316982734

DOWNLOAD EBOOK

Practitioners in water engineering rely on a thorough understanding of shallow water flows in order to safeguard our habitat, while at the same time sustaining the water environment. This book proposes a unified theoretical framework for the different types of shallow flow, providing a coherent approach to interpret the behaviour of such flows, and highlighting the similarities and differences. Every major topic in the book is accompanied by worked examples illustrating the theoretical concepts. Practical examples, showcasing inspiring research and engineering applications from the past and present, provide insight into how the theory developed. The book is also supplemented by a range of online resources, available at www.cambridge.org/battjes, including problem sets and computer codes. A solutions manual is available for instructors. This book is intended for students and professionals working in environmental water systems, in areas such as coasts, rivers, harbours, drainage, and irrigation canals.


Book Synopsis Unsteady Flow in Open Channels by : Jurjen A. Battjes

Download or read book Unsteady Flow in Open Channels written by Jurjen A. Battjes and published by Cambridge University Press. This book was released on 2017-02-16 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practitioners in water engineering rely on a thorough understanding of shallow water flows in order to safeguard our habitat, while at the same time sustaining the water environment. This book proposes a unified theoretical framework for the different types of shallow flow, providing a coherent approach to interpret the behaviour of such flows, and highlighting the similarities and differences. Every major topic in the book is accompanied by worked examples illustrating the theoretical concepts. Practical examples, showcasing inspiring research and engineering applications from the past and present, provide insight into how the theory developed. The book is also supplemented by a range of online resources, available at www.cambridge.org/battjes, including problem sets and computer codes. A solutions manual is available for instructors. This book is intended for students and professionals working in environmental water systems, in areas such as coasts, rivers, harbours, drainage, and irrigation canals.


Turbomachinery Fluid Dynamics and Heat Transfer

Turbomachinery Fluid Dynamics and Heat Transfer

Author: Hah

Publisher: CRC Press

Published: 1997-02-04

Total Pages: 464

ISBN-13: 9780824798291

DOWNLOAD EBOOK

This festschrift in honor of Professor Budugur Lakshminarayana's 60th birthday-based on the proceedings of a symposium on Turbomachinery Fluid Dynamics and Heat Transfer held recently at The Pennsylvania State University, University Park-provides authoritative and conclusive research results as well as new insights into complex flow features found in the turbomachinery used for propulsion, power, and industrial applications. Explaining in detail compressors, heat transfer fields in turbines, computational fluid dynamics, and unsteady flows, Turbomachinery Fluid Dynamics and Heat Transfer covers: Mixing mechanisms, annulus wall boundary layers, and the flow field in transonic turbocompressors The numerical implementation of turbulence models in a computer code Secondary flows, film cooling, and thermal turbulence modeling The visualization method of modeling using liquid crystals Innovative techniques in the computational modeling of compressor and turbine flows measurement in unsteady flows as well as axial flows and compressor noise generation And much more Generously illustrated and containing key bibliographic citations, Turbomachinery Fluid Dynamics and Heat Transfer is an indispensable resource for mechanical, design, aerospace, marine, manufacturing, materials, industrial, and reliability engineers; and upper-level undergraduate and graduate students in these disciplines.


Book Synopsis Turbomachinery Fluid Dynamics and Heat Transfer by : Hah

Download or read book Turbomachinery Fluid Dynamics and Heat Transfer written by Hah and published by CRC Press. This book was released on 1997-02-04 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This festschrift in honor of Professor Budugur Lakshminarayana's 60th birthday-based on the proceedings of a symposium on Turbomachinery Fluid Dynamics and Heat Transfer held recently at The Pennsylvania State University, University Park-provides authoritative and conclusive research results as well as new insights into complex flow features found in the turbomachinery used for propulsion, power, and industrial applications. Explaining in detail compressors, heat transfer fields in turbines, computational fluid dynamics, and unsteady flows, Turbomachinery Fluid Dynamics and Heat Transfer covers: Mixing mechanisms, annulus wall boundary layers, and the flow field in transonic turbocompressors The numerical implementation of turbulence models in a computer code Secondary flows, film cooling, and thermal turbulence modeling The visualization method of modeling using liquid crystals Innovative techniques in the computational modeling of compressor and turbine flows measurement in unsteady flows as well as axial flows and compressor noise generation And much more Generously illustrated and containing key bibliographic citations, Turbomachinery Fluid Dynamics and Heat Transfer is an indispensable resource for mechanical, design, aerospace, marine, manufacturing, materials, industrial, and reliability engineers; and upper-level undergraduate and graduate students in these disciplines.