Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools

Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools

Author: József Dombi

Publisher: Springer Nature

Published: 2021-04-28

Total Pages: 186

ISBN-13: 3030722805

DOWNLOAD EBOOK

The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.


Book Synopsis Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools by : József Dombi

Download or read book Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools written by József Dombi and published by Springer Nature. This book was released on 2021-04-28 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.


Data Science and Intelligent Systems

Data Science and Intelligent Systems

Author: Radek Silhavy

Publisher: Springer Nature

Published: 2021-11-16

Total Pages: 1073

ISBN-13: 3030903214

DOWNLOAD EBOOK

This book constitutes the second part of refereed proceedings of the 5th Computational Methods in Systems and Software 2021 (CoMeSySo 2021) proceedings. The real-world problems related to data science and algorithm design related to systems and software engineering are presented in this papers. Furthermore, the basic research’ papers that describe novel approaches in the data science, algorithm design and in systems and software engineering are included. The CoMeSySo 2021 conference is breaking the barriers, being held online. CoMeSySo 2021 intends to provide an international forum for the discussion of the latest high-quality research results


Book Synopsis Data Science and Intelligent Systems by : Radek Silhavy

Download or read book Data Science and Intelligent Systems written by Radek Silhavy and published by Springer Nature. This book was released on 2021-11-16 with total page 1073 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the second part of refereed proceedings of the 5th Computational Methods in Systems and Software 2021 (CoMeSySo 2021) proceedings. The real-world problems related to data science and algorithm design related to systems and software engineering are presented in this papers. Furthermore, the basic research’ papers that describe novel approaches in the data science, algorithm design and in systems and software engineering are included. The CoMeSySo 2021 conference is breaking the barriers, being held online. CoMeSySo 2021 intends to provide an international forum for the discussion of the latest high-quality research results


Computational Intelligence and Mathematics for Tackling Complex Problems 5

Computational Intelligence and Mathematics for Tackling Complex Problems 5

Author: M.Eugenia Cornejo

Publisher: Springer Nature

Published: 2024-01-02

Total Pages: 151

ISBN-13: 3031469798

DOWNLOAD EBOOK

This book is focused on connecting two interesting research areas, mathematics and computational intelligence, by means of appealing contributions devoted to give solutions to different challenges of the current technological age. It continues the collection of articles dealing with the important and efficient combination of these both areas, with a stress of fuzzy systems and fuzzy logic. It also includes relevant papers on the development and application of mathematics, artificial intelligence, and automatic reasoning tools to Digital Forensics, which have been developed within the framework of the COST Action DigForASP-CA17124 (digforasp.uca.es).


Book Synopsis Computational Intelligence and Mathematics for Tackling Complex Problems 5 by : M.Eugenia Cornejo

Download or read book Computational Intelligence and Mathematics for Tackling Complex Problems 5 written by M.Eugenia Cornejo and published by Springer Nature. This book was released on 2024-01-02 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is focused on connecting two interesting research areas, mathematics and computational intelligence, by means of appealing contributions devoted to give solutions to different challenges of the current technological age. It continues the collection of articles dealing with the important and efficient combination of these both areas, with a stress of fuzzy systems and fuzzy logic. It also includes relevant papers on the development and application of mathematics, artificial intelligence, and automatic reasoning tools to Digital Forensics, which have been developed within the framework of the COST Action DigForASP-CA17124 (digforasp.uca.es).


Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Author: Wojciech Samek

Publisher: Springer Nature

Published: 2019-09-10

Total Pages: 435

ISBN-13: 3030289540

DOWNLOAD EBOOK

The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.


Book Synopsis Explainable AI: Interpreting, Explaining and Visualizing Deep Learning by : Wojciech Samek

Download or read book Explainable AI: Interpreting, Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.


Explainable and Interpretable Models in Computer Vision and Machine Learning

Explainable and Interpretable Models in Computer Vision and Machine Learning

Author: Hugo Jair Escalante

Publisher: Springer

Published: 2018-11-29

Total Pages: 299

ISBN-13: 3319981315

DOWNLOAD EBOOK

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations


Book Synopsis Explainable and Interpretable Models in Computer Vision and Machine Learning by : Hugo Jair Escalante

Download or read book Explainable and Interpretable Models in Computer Vision and Machine Learning written by Hugo Jair Escalante and published by Springer. This book was released on 2018-11-29 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations


Multicriteria Decision Analysis in Geographic Information Science

Multicriteria Decision Analysis in Geographic Information Science

Author: Jacek Malczewski

Publisher: Springer

Published: 2015-02-02

Total Pages: 335

ISBN-13: 3540747575

DOWNLOAD EBOOK

This book is intended for the GIS Science and Decision Science communities. It is primarily targeted at postgraduate students and practitioners in GIS and urban, regional and environmental planning as well as applied decision analysis. It is also suitable for those studying and working with spatial decision support systems. The main objectives of this book are to effectivley integrate Multicriteria Decision Analysis (MCDA) into Geographic Information Science (GIScience), to provide a comprehensive account of theories, methods, technologies and tools for tackling spatial decision problems and to demonstrate how the GIS-MCDA approaches can be used in a wide range of planning and management situations.


Book Synopsis Multicriteria Decision Analysis in Geographic Information Science by : Jacek Malczewski

Download or read book Multicriteria Decision Analysis in Geographic Information Science written by Jacek Malczewski and published by Springer. This book was released on 2015-02-02 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for the GIS Science and Decision Science communities. It is primarily targeted at postgraduate students and practitioners in GIS and urban, regional and environmental planning as well as applied decision analysis. It is also suitable for those studying and working with spatial decision support systems. The main objectives of this book are to effectivley integrate Multicriteria Decision Analysis (MCDA) into Geographic Information Science (GIScience), to provide a comprehensive account of theories, methods, technologies and tools for tackling spatial decision problems and to demonstrate how the GIS-MCDA approaches can be used in a wide range of planning and management situations.


Fuzzy Logic and Mathematics

Fuzzy Logic and Mathematics

Author: Radim Bělohlávek

Publisher: Oxford University Press

Published: 2017

Total Pages: 545

ISBN-13: 0190200014

DOWNLOAD EBOOK

The main part of the book is a comprehensive overview of the development of fuzzy logic and its applications in various areas of human affair since its genesis in the mid 1960s. This overview is then employed for assessing the significance of fuzzy logic and mathematics based on fuzzy logic.


Book Synopsis Fuzzy Logic and Mathematics by : Radim Bělohlávek

Download or read book Fuzzy Logic and Mathematics written by Radim Bělohlávek and published by Oxford University Press. This book was released on 2017 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main part of the book is a comprehensive overview of the development of fuzzy logic and its applications in various areas of human affair since its genesis in the mid 1960s. This overview is then employed for assessing the significance of fuzzy logic and mathematics based on fuzzy logic.


Rule Extraction from Support Vector Machines

Rule Extraction from Support Vector Machines

Author: Joachim Diederich

Publisher: Springer

Published: 2007-12-27

Total Pages: 267

ISBN-13: 3540753907

DOWNLOAD EBOOK

Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost – an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.


Book Synopsis Rule Extraction from Support Vector Machines by : Joachim Diederich

Download or read book Rule Extraction from Support Vector Machines written by Joachim Diederich and published by Springer. This book was released on 2007-12-27 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost – an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.


Fuzzy Modelling

Fuzzy Modelling

Author: Witold Pedrycz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 399

ISBN-13: 1461313651

DOWNLOAD EBOOK

Fuzzy Modelling: Paradigms and Practice provides an up-to-date and authoritative compendium of fuzzy models, identification algorithms and applications. Chapters in this book have been written by the leading scholars and researchers in their respective subject areas. Several of these chapters include both theoretical material and applications. The editor of this volume has organized and edited the chapters into a coherent and uniform framework. The objective of this book is to provide researchers and practitioners involved in the development of models for complex systems with an understanding of fuzzy modelling, and an appreciation of what makes these models unique. The chapters are organized into three major parts covering relational models, fuzzy neural networks and rule-based models. The material on relational models includes theory along with a large number of implemented case studies, including some on speech recognition, prediction, and ecological systems. The part on fuzzy neural networks covers some fundamentals, such as neurocomputing, fuzzy neurocomputing, etc., identifies the nature of the relationship that exists between fuzzy systems and neural networks, and includes extensive coverage of their architectures. The last part addresses the main design principles governing the development of rule-based models. Fuzzy Modelling: Paradigms and Practice provides a wealth of specific fuzzy modelling paradigms, algorithms and tools used in systems modelling. Also included is a panoply of case studies from various computer, engineering and science disciplines. This should be a primary reference work for researchers and practitioners developing models of complex systems.


Book Synopsis Fuzzy Modelling by : Witold Pedrycz

Download or read book Fuzzy Modelling written by Witold Pedrycz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy Modelling: Paradigms and Practice provides an up-to-date and authoritative compendium of fuzzy models, identification algorithms and applications. Chapters in this book have been written by the leading scholars and researchers in their respective subject areas. Several of these chapters include both theoretical material and applications. The editor of this volume has organized and edited the chapters into a coherent and uniform framework. The objective of this book is to provide researchers and practitioners involved in the development of models for complex systems with an understanding of fuzzy modelling, and an appreciation of what makes these models unique. The chapters are organized into three major parts covering relational models, fuzzy neural networks and rule-based models. The material on relational models includes theory along with a large number of implemented case studies, including some on speech recognition, prediction, and ecological systems. The part on fuzzy neural networks covers some fundamentals, such as neurocomputing, fuzzy neurocomputing, etc., identifies the nature of the relationship that exists between fuzzy systems and neural networks, and includes extensive coverage of their architectures. The last part addresses the main design principles governing the development of rule-based models. Fuzzy Modelling: Paradigms and Practice provides a wealth of specific fuzzy modelling paradigms, algorithms and tools used in systems modelling. Also included is a panoply of case studies from various computer, engineering and science disciplines. This should be a primary reference work for researchers and practitioners developing models of complex systems.


NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

Author: S. RAJASEKARAN

Publisher: PHI Learning Pvt. Ltd.

Published: 2003-01-01

Total Pages: 459

ISBN-13: 8120321863

DOWNLOAD EBOOK

This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.


Book Synopsis NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM by : S. RAJASEKARAN

Download or read book NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM written by S. RAJASEKARAN and published by PHI Learning Pvt. Ltd.. This book was released on 2003-01-01 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.