Extensions of the Stability Theorem of the Minkowski Space in General Relativity

Extensions of the Stability Theorem of the Minkowski Space in General Relativity

Author: Lydia Bieri

Publisher: American Mathematical Soc.

Published: 2009-06-30

Total Pages: 523

ISBN-13: 0821848232

DOWNLOAD EBOOK

A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.


Book Synopsis Extensions of the Stability Theorem of the Minkowski Space in General Relativity by : Lydia Bieri

Download or read book Extensions of the Stability Theorem of the Minkowski Space in General Relativity written by Lydia Bieri and published by American Mathematical Soc.. This book was released on 2009-06-30 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.


Theory, Numerics and Applications of Hyperbolic Problems II

Theory, Numerics and Applications of Hyperbolic Problems II

Author: Christian Klingenberg

Publisher: Springer

Published: 2018-06-27

Total Pages: 714

ISBN-13: 3319915487

DOWNLOAD EBOOK

The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.


Book Synopsis Theory, Numerics and Applications of Hyperbolic Problems II by : Christian Klingenberg

Download or read book Theory, Numerics and Applications of Hyperbolic Problems II written by Christian Klingenberg and published by Springer. This book was released on 2018-06-27 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.


The Global Nonlinear Stability Of Minkowski Space For Self-gravitating Massive Fields

The Global Nonlinear Stability Of Minkowski Space For Self-gravitating Massive Fields

Author: Lefloch Philippe G

Publisher: World Scientific

Published: 2017-08-16

Total Pages: 188

ISBN-13: 9813230878

DOWNLOAD EBOOK

This book is devoted to the Einstein's field equations of general relativity for self-gravitating massive scalar fields. We formulate the initial value problem when the initial data set is a perturbation of an asymptotically flat, spacelike hypersurface in Minkowski spacetime. We then establish the existence of an Einstein development associated with this initial data set, which is proven to be an asymptotically flat and future geodesically complete spacetime. Contents: IntroductionOverview of the Hyperboloidal Foliation MethodFunctional Analysis on Hyperboloids of Minkowski SpacetimeQuasi-Null Structure of the Einstein-Massive Field System on HyperboloidsInitialization of the Bootstrap ArgumentDirect Control of Nonlinearities in the Einstein EquationsDirect Consequences of the Wave Gauge ConditionSecond-Order Derivatives of the Spacetime MetricSup-Norm Estimate Based on CharacteristicsLow-Order Refined Energy Estimate for the Spacetime MetricLow-Order Refined Sup-Norm Estimate for the Metric and Scalar FieldHigh-Order Refined L² EstimatesHigh-Order Refined Sup-Norm EstimatesLow-Order Refined Energy Estimate for the Scalar FieldAppendices: Revisiting the Wave-Klein-Gordon ModelSup-Norm Estimate for the Wave EquationsSup-Norm Estimate for the Klein-Gordon EquationCommutator Estimates for the Hyperboloidal FrameBibliography Readership: Graduate students and researchers interested in mathematical general relativity. Keywords: General Relativity;Einstein Equations;Massive Field;Minkowski Space;Nonlinear Global Stability;Hyperboloidal Foliation MethodReview: Key Features: This is the first mathematical result on the global nonlinear stability of matter fields in general relativityProvide a framework to treat other matter fields such as the massive Yang-Mills fields which are of particular importance in physics


Book Synopsis The Global Nonlinear Stability Of Minkowski Space For Self-gravitating Massive Fields by : Lefloch Philippe G

Download or read book The Global Nonlinear Stability Of Minkowski Space For Self-gravitating Massive Fields written by Lefloch Philippe G and published by World Scientific. This book was released on 2017-08-16 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the Einstein's field equations of general relativity for self-gravitating massive scalar fields. We formulate the initial value problem when the initial data set is a perturbation of an asymptotically flat, spacelike hypersurface in Minkowski spacetime. We then establish the existence of an Einstein development associated with this initial data set, which is proven to be an asymptotically flat and future geodesically complete spacetime. Contents: IntroductionOverview of the Hyperboloidal Foliation MethodFunctional Analysis on Hyperboloids of Minkowski SpacetimeQuasi-Null Structure of the Einstein-Massive Field System on HyperboloidsInitialization of the Bootstrap ArgumentDirect Control of Nonlinearities in the Einstein EquationsDirect Consequences of the Wave Gauge ConditionSecond-Order Derivatives of the Spacetime MetricSup-Norm Estimate Based on CharacteristicsLow-Order Refined Energy Estimate for the Spacetime MetricLow-Order Refined Sup-Norm Estimate for the Metric and Scalar FieldHigh-Order Refined L² EstimatesHigh-Order Refined Sup-Norm EstimatesLow-Order Refined Energy Estimate for the Scalar FieldAppendices: Revisiting the Wave-Klein-Gordon ModelSup-Norm Estimate for the Wave EquationsSup-Norm Estimate for the Klein-Gordon EquationCommutator Estimates for the Hyperboloidal FrameBibliography Readership: Graduate students and researchers interested in mathematical general relativity. Keywords: General Relativity;Einstein Equations;Massive Field;Minkowski Space;Nonlinear Global Stability;Hyperboloidal Foliation MethodReview: Key Features: This is the first mathematical result on the global nonlinear stability of matter fields in general relativityProvide a framework to treat other matter fields such as the massive Yang-Mills fields which are of particular importance in physics


General Relativity, Cosmology and Astrophysics

General Relativity, Cosmology and Astrophysics

Author: Jiří Bičák

Publisher: Springer

Published: 2014-06-12

Total Pages: 535

ISBN-13: 3319063499

DOWNLOAD EBOOK

The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.


Book Synopsis General Relativity, Cosmology and Astrophysics by : Jiří Bičák

Download or read book General Relativity, Cosmology and Astrophysics written by Jiří Bičák and published by Springer. This book was released on 2014-06-12 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.


Accelerating Expansion

Accelerating Expansion

Author: Gordon Belot

Publisher: Oxford University Press

Published: 2023-07-25

Total Pages: 241

ISBN-13: 0192691562

DOWNLOAD EBOOK

Accelerating Expansion explores some of the philosophical implications of modern cosmology, focused on the significance that the discovery of the accelerating expansion of the Universe has for our understanding of time, geometry, and physics. The appearance of the cosmological constant in the equations of general relativity allows one to model universes in which space has an inherent tendency towards expansion. This constant, introduced by Einstein but subsequently abandoned by him, returned to centre stage with the discovery of the accelerating expansion. This pedagogically-oriented essay begins with a study of the most basic and elegant relativistic world that involves a positive cosmological constant, de Sitter spacetime. It then turns to the relatives of de Sitter spacetime that dominate modern relativistic cosmology. Some of the topics considered include: the nature of time and simultaneity in de Sitter worlds; the sense in which de Sitter spacetime is a powerful dynamical attractor; the limited extent to which observation can give us information about the topology of space in a world undergoing accelerated expansion; and cosmologists' favourite sceptical worry about the reliability of evidence and the possibility of knowledge, the problem of Boltzmann brains.


Book Synopsis Accelerating Expansion by : Gordon Belot

Download or read book Accelerating Expansion written by Gordon Belot and published by Oxford University Press. This book was released on 2023-07-25 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accelerating Expansion explores some of the philosophical implications of modern cosmology, focused on the significance that the discovery of the accelerating expansion of the Universe has for our understanding of time, geometry, and physics. The appearance of the cosmological constant in the equations of general relativity allows one to model universes in which space has an inherent tendency towards expansion. This constant, introduced by Einstein but subsequently abandoned by him, returned to centre stage with the discovery of the accelerating expansion. This pedagogically-oriented essay begins with a study of the most basic and elegant relativistic world that involves a positive cosmological constant, de Sitter spacetime. It then turns to the relatives of de Sitter spacetime that dominate modern relativistic cosmology. Some of the topics considered include: the nature of time and simultaneity in de Sitter worlds; the sense in which de Sitter spacetime is a powerful dynamical attractor; the limited extent to which observation can give us information about the topology of space in a world undergoing accelerated expansion; and cosmologists' favourite sceptical worry about the reliability of evidence and the possibility of knowledge, the problem of Boltzmann brains.


Partial Differential Equations III

Partial Differential Equations III

Author: Michael E. Taylor

Publisher: Springer Nature

Published: 2023-12-06

Total Pages: 774

ISBN-13: 3031339282

DOWNLOAD EBOOK

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L^p Sobolev spaces, Holder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis. The third edition further expands the material by incorporating new theorems and applications throughout the book, and by deepening connections and relating concepts across chapters. It includes new sections on rigid body motion, on probabilistic results related to random walks, on aspects of operator theory related to quantum mechanics, on overdetermined systems, and on the Euler equation for incompressible fluids. The appendices have also been updated with additional results, ranging from weak convergence of measures to the curvature of Kahler manifolds. Michael E. Taylor is a Professor of Mathematics at the University of North Carolina, Chapel Hill, NC. Review of first edition: “These volumes will be read by several generations of readers eager to learn the modern theory of partial differential equations of mathematical physics and the analysis in which this theory is rooted.” (Peter Lax, SIAM review, June 1998)


Book Synopsis Partial Differential Equations III by : Michael E. Taylor

Download or read book Partial Differential Equations III written by Michael E. Taylor and published by Springer Nature. This book was released on 2023-12-06 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L^p Sobolev spaces, Holder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis. The third edition further expands the material by incorporating new theorems and applications throughout the book, and by deepening connections and relating concepts across chapters. It includes new sections on rigid body motion, on probabilistic results related to random walks, on aspects of operator theory related to quantum mechanics, on overdetermined systems, and on the Euler equation for incompressible fluids. The appendices have also been updated with additional results, ranging from weak convergence of measures to the curvature of Kahler manifolds. Michael E. Taylor is a Professor of Mathematics at the University of North Carolina, Chapel Hill, NC. Review of first edition: “These volumes will be read by several generations of readers eager to learn the modern theory of partial differential equations of mathematical physics and the analysis in which this theory is rooted.” (Peter Lax, SIAM review, June 1998)


Geometric Relativity

Geometric Relativity

Author: Dan A. Lee

Publisher: American Mathematical Society

Published: 2021-12-20

Total Pages: 377

ISBN-13: 1470466236

DOWNLOAD EBOOK

Many problems in general relativity are essentially geometric in nature, in the sense that they can be understood in terms of Riemannian geometry and partial differential equations. This book is centered around the study of mass in general relativity using the techniques of geometric analysis. Specifically, it provides a comprehensive treatment of the positive mass theorem and closely related results, such as the Penrose inequality, drawing on a variety of tools used in this area of research, including minimal hypersurfaces, conformal geometry, inverse mean curvature flow, conformal flow, spinors and the Dirac operator, marginally outer trapped surfaces, and density theorems. This is the first time these topics have been gathered into a single place and presented with an advanced graduate student audience in mind; several dozen exercises are also included. The main prerequisite for this book is a working understanding of Riemannian geometry and basic knowledge of elliptic linear partial differential equations, with only minimal prior knowledge of physics required. The second part of the book includes a short crash course on general relativity, which provides background for the study of asymptotically flat initial data sets satisfying the dominant energy condition.


Book Synopsis Geometric Relativity by : Dan A. Lee

Download or read book Geometric Relativity written by Dan A. Lee and published by American Mathematical Society. This book was released on 2021-12-20 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in general relativity are essentially geometric in nature, in the sense that they can be understood in terms of Riemannian geometry and partial differential equations. This book is centered around the study of mass in general relativity using the techniques of geometric analysis. Specifically, it provides a comprehensive treatment of the positive mass theorem and closely related results, such as the Penrose inequality, drawing on a variety of tools used in this area of research, including minimal hypersurfaces, conformal geometry, inverse mean curvature flow, conformal flow, spinors and the Dirac operator, marginally outer trapped surfaces, and density theorems. This is the first time these topics have been gathered into a single place and presented with an advanced graduate student audience in mind; several dozen exercises are also included. The main prerequisite for this book is a working understanding of Riemannian geometry and basic knowledge of elliptic linear partial differential equations, with only minimal prior knowledge of physics required. The second part of the book includes a short crash course on general relativity, which provides background for the study of asymptotically flat initial data sets satisfying the dominant energy condition.


The Global Nonlinear Stability of the Minkowski Space (PMS-41)

The Global Nonlinear Stability of the Minkowski Space (PMS-41)

Author: Demetrios Christodoulou

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 525

ISBN-13: 1400863171

DOWNLOAD EBOOK

The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter. Originally published in 1994. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Book Synopsis The Global Nonlinear Stability of the Minkowski Space (PMS-41) by : Demetrios Christodoulou

Download or read book The Global Nonlinear Stability of the Minkowski Space (PMS-41) written by Demetrios Christodoulou and published by Princeton University Press. This book was released on 2014-07-14 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter. Originally published in 1994. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Einstein Equations: Physical and Mathematical Aspects of General Relativity

Einstein Equations: Physical and Mathematical Aspects of General Relativity

Author: Sergio Cacciatori

Publisher: Springer Nature

Published: 2019-11-23

Total Pages: 359

ISBN-13: 3030180611

DOWNLOAD EBOOK

This book is based on lectures given at the first edition of the Domoschool, the International Alpine School in Mathematics and Physics, held in Domodossola, Italy, in July 2018. It is divided into two parts. Part I consists of four sets of lecture notes. These are extended versions of lectures given at the Domoschool, written by well-known experts in mathematics and physics related to General Relativity. Part II collects talks by selected participants, focusing on research related to General Relativity.


Book Synopsis Einstein Equations: Physical and Mathematical Aspects of General Relativity by : Sergio Cacciatori

Download or read book Einstein Equations: Physical and Mathematical Aspects of General Relativity written by Sergio Cacciatori and published by Springer Nature. This book was released on 2019-11-23 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at the first edition of the Domoschool, the International Alpine School in Mathematics and Physics, held in Domodossola, Italy, in July 2018. It is divided into two parts. Part I consists of four sets of lecture notes. These are extended versions of lectures given at the Domoschool, written by well-known experts in mathematics and physics related to General Relativity. Part II collects talks by selected participants, focusing on research related to General Relativity.


Global Nonlinear Stability of Schwarzschild Spacetime Under Polarized Perturbations

Global Nonlinear Stability of Schwarzschild Spacetime Under Polarized Perturbations

Author: Jérémie Szeftel

Publisher: Princeton University Press

Published: 2020-12-15

Total Pages: 858

ISBN-13: 0691212430

DOWNLOAD EBOOK

Essential mathematical insights into one of the most important and challenging open problems in general relativity—the stability of black holes One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. In this book, Sergiu Klainerman and Jérémie Szeftel take a first important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes—or Schwarzschild spacetimes—under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, Klainerman and Szeftel introduce a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, this book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture.


Book Synopsis Global Nonlinear Stability of Schwarzschild Spacetime Under Polarized Perturbations by : Jérémie Szeftel

Download or read book Global Nonlinear Stability of Schwarzschild Spacetime Under Polarized Perturbations written by Jérémie Szeftel and published by Princeton University Press. This book was released on 2020-12-15 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essential mathematical insights into one of the most important and challenging open problems in general relativity—the stability of black holes One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. In this book, Sergiu Klainerman and Jérémie Szeftel take a first important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes—or Schwarzschild spacetimes—under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, Klainerman and Szeftel introduce a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, this book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture.