Extreme States of Matter in Strong Interaction Physics

Extreme States of Matter in Strong Interaction Physics

Author: Helmut Satz

Publisher: Springer

Published: 2018-02-26

Total Pages: 288

ISBN-13: 3319718940

DOWNLOAD EBOOK

This book is a course-tested primer on the thermodynamics of strongly interacting matter – a profound and challenging area of both theoretical and experimental modern physics. Analytical and numerical studies of statistical quantum chromodynamics provide the main theoretical tool, while in experiments, high-energy nuclear collisions are the key for extensive laboratory investigations. As such, the field straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. The book addresses, above all, the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that highlights the basic concepts and ideas and explains why we do what we do. Much of the book focuses on equilibrium thermodynamics: first it presents simplified phenomenological pictures, leading to critical behavior in hadronic matter and to a quark-hadron phase transition. This is followed by elements of finite temperature lattice QCD and an exposition of the important results obtained through the computer simulation of the lattice formulation. It goes on to clarify the relationship between the resulting critical behavior due to symmetry breaking/restoration in QCD, before turning to the QCD phase diagram. The presentation of bulk equilibrium thermodyamics is completed by studying the properties of the quark-gluon plasma as a new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics that arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics. This second edition includes a new chapter on the hydrodynamic evolution of the medium produced in nuclear collisions. Since the study of flow for strongly interacting fluids has gained ever-increasing importance over the years, it is dealt with it in some detail, including comments on gauge/gravity duality. Moreover, other aspects of experimental studies are brought up to date, such as the search for critical behavior in multihadron production, the calibration of quarkonium production in nuclear collisions, and the relation between strangeness suppression and deconfinement.


Book Synopsis Extreme States of Matter in Strong Interaction Physics by : Helmut Satz

Download or read book Extreme States of Matter in Strong Interaction Physics written by Helmut Satz and published by Springer. This book was released on 2018-02-26 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a course-tested primer on the thermodynamics of strongly interacting matter – a profound and challenging area of both theoretical and experimental modern physics. Analytical and numerical studies of statistical quantum chromodynamics provide the main theoretical tool, while in experiments, high-energy nuclear collisions are the key for extensive laboratory investigations. As such, the field straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. The book addresses, above all, the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that highlights the basic concepts and ideas and explains why we do what we do. Much of the book focuses on equilibrium thermodynamics: first it presents simplified phenomenological pictures, leading to critical behavior in hadronic matter and to a quark-hadron phase transition. This is followed by elements of finite temperature lattice QCD and an exposition of the important results obtained through the computer simulation of the lattice formulation. It goes on to clarify the relationship between the resulting critical behavior due to symmetry breaking/restoration in QCD, before turning to the QCD phase diagram. The presentation of bulk equilibrium thermodyamics is completed by studying the properties of the quark-gluon plasma as a new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics that arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics. This second edition includes a new chapter on the hydrodynamic evolution of the medium produced in nuclear collisions. Since the study of flow for strongly interacting fluids has gained ever-increasing importance over the years, it is dealt with it in some detail, including comments on gauge/gravity duality. Moreover, other aspects of experimental studies are brought up to date, such as the search for critical behavior in multihadron production, the calibration of quarkonium production in nuclear collisions, and the relation between strangeness suppression and deconfinement.


Extreme States of Matter

Extreme States of Matter

Author: Vladimir E. Fortov

Publisher: Springer

Published: 2015-12-26

Total Pages: 700

ISBN-13: 3319189530

DOWNLOAD EBOOK

With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.


Book Synopsis Extreme States of Matter by : Vladimir E. Fortov

Download or read book Extreme States of Matter written by Vladimir E. Fortov and published by Springer. This book was released on 2015-12-26 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.


Extreme States of Matter

Extreme States of Matter

Author: Vladimir E. Fortov

Publisher: Springer Science & Business Media

Published: 2010-11-16

Total Pages: 345

ISBN-13: 3642164641

DOWNLOAD EBOOK

With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview.


Book Synopsis Extreme States of Matter by : Vladimir E. Fortov

Download or read book Extreme States of Matter written by Vladimir E. Fortov and published by Springer Science & Business Media. This book was released on 2010-11-16 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview.


Extreme States of Matter

Extreme States of Matter

Author: Vladimir E. Fortov

Publisher: Springer

Published: 2011-07-23

Total Pages: 332

ISBN-13: 9783642164651

DOWNLOAD EBOOK

With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview.


Book Synopsis Extreme States of Matter by : Vladimir E. Fortov

Download or read book Extreme States of Matter written by Vladimir E. Fortov and published by Springer. This book was released on 2011-07-23 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview.


Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN

Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN

Author: Johann Rafelski

Publisher: Springer

Published: 2015-10-21

Total Pages: 441

ISBN-13: 3319175459

DOWNLOAD EBOOK

This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gaździcki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes. About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Bor n in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.


Book Synopsis Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN by : Johann Rafelski

Download or read book Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN written by Johann Rafelski and published by Springer. This book was released on 2015-10-21 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gaździcki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes. About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Bor n in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.


Study of Quark Gluon Plasma By Particle Correlations in Heavy Ion Collisions

Study of Quark Gluon Plasma By Particle Correlations in Heavy Ion Collisions

Author: Li Yi

Publisher: Springer

Published: 2016-08-25

Total Pages: 83

ISBN-13: 1493964879

DOWNLOAD EBOOK

This thesis covers several important topics relevant to our understanding of quark-gluon plasma. It describes measurement of the third-order harmonic flow using two-particle correlations and isolation of flow and non-flow contributions to particle correlations in gold-gold collisions. The work also investigates long-range longitudinal correlations in small systems of deuteron-gold collisions. The former is related to the hydrodynamic transport properties of the quark-gluon plasma created in gold-gold collisions. The latter pertains to the question whether hydrodynamics is applicable to small systems, such as deuteron-gold collisions, and whether the quark-gluon plasma can be formed in those small-system collisions. The work presented in this thesis was conducted with the STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, where the center-of-mass energy of both collision systems was a factor of 100 larger than the rest mass of the colliding nuclei. The results contained in this thesis are highly relevant to our quest for deeper understanding of quantum chromodynamics. The results obtained challenge the interpretation of previous works from several other experiments on small systems, and provoke a fresh look at the physics of hydrodynamics and particle correlations pertinent to high energy nuclear collisions.


Book Synopsis Study of Quark Gluon Plasma By Particle Correlations in Heavy Ion Collisions by : Li Yi

Download or read book Study of Quark Gluon Plasma By Particle Correlations in Heavy Ion Collisions written by Li Yi and published by Springer. This book was released on 2016-08-25 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis covers several important topics relevant to our understanding of quark-gluon plasma. It describes measurement of the third-order harmonic flow using two-particle correlations and isolation of flow and non-flow contributions to particle correlations in gold-gold collisions. The work also investigates long-range longitudinal correlations in small systems of deuteron-gold collisions. The former is related to the hydrodynamic transport properties of the quark-gluon plasma created in gold-gold collisions. The latter pertains to the question whether hydrodynamics is applicable to small systems, such as deuteron-gold collisions, and whether the quark-gluon plasma can be formed in those small-system collisions. The work presented in this thesis was conducted with the STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, where the center-of-mass energy of both collision systems was a factor of 100 larger than the rest mass of the colliding nuclei. The results contained in this thesis are highly relevant to our quest for deeper understanding of quantum chromodynamics. The results obtained challenge the interpretation of previous works from several other experiments on small systems, and provoke a fresh look at the physics of hydrodynamics and particle correlations pertinent to high energy nuclear collisions.


Extreme States of Matter

Extreme States of Matter

Author: Helfried Rothbauer

Publisher:

Published: 2017-10

Total Pages: 408

ISBN-13: 9781681178530

DOWNLOAD EBOOK

"In physics, four states of matter are apparent in daily life: solid, liquid, gas, and plasma. Many other states are known to exist only in extreme situations, such as BoseEinstein condensates, neutron-degenerate matter, and quark-gluon plasma, which only occur in situations of extreme cold, extreme density, and extremely high-energy color-charged matter respectively. Some other states are believed to be possible but remain theoretical for now. The aim of high energy physics is to determine the most fundamental building blocks of matter and to understand the interactions between these particles. The research effort of the high energy theory group covers a wide range of fields, including quantum field theory, string theory, quantum gravity models in various dimensions, and the theory of turbulence, particle cosmology, phenomenology of the Standard Model and beyond, and also computer simulations of problems that arise in these areas. Black hole theory provides an important testing ground for the quantum theory of gravity and in recent work significant progress has been achieved in explaining black hole entropy and Hawking radiation from a more fundamental point of view. Work on quantum black holes has led to new relations between strings and non-Abelian gauge theory. This application of string theory has already provided new insights into strongly coupled gauge theories, and it continues to be an exciting area. This book gives intriguing approaches into the unusual forms and behavior of matter under extremely high pressures and temperatures, devoted to more specific topics which arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics. It also presents the studies into the behavior of substances at ultimately high pressures and temperatures obtainable by way of kinetic or electromagnetic energy cumulation in laboratory conditions. Also considered are the diversified states of matter and the processes occurring under gravitational forces and thermonuclear energy release. The book will be of interest to students, novice researchers and all the many young scientists starting their scientific research in this field, providing them with a general, self-sufficient introduction that highlight in particular the basic concepts and ideas."


Book Synopsis Extreme States of Matter by : Helfried Rothbauer

Download or read book Extreme States of Matter written by Helfried Rothbauer and published by . This book was released on 2017-10 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In physics, four states of matter are apparent in daily life: solid, liquid, gas, and plasma. Many other states are known to exist only in extreme situations, such as BoseEinstein condensates, neutron-degenerate matter, and quark-gluon plasma, which only occur in situations of extreme cold, extreme density, and extremely high-energy color-charged matter respectively. Some other states are believed to be possible but remain theoretical for now. The aim of high energy physics is to determine the most fundamental building blocks of matter and to understand the interactions between these particles. The research effort of the high energy theory group covers a wide range of fields, including quantum field theory, string theory, quantum gravity models in various dimensions, and the theory of turbulence, particle cosmology, phenomenology of the Standard Model and beyond, and also computer simulations of problems that arise in these areas. Black hole theory provides an important testing ground for the quantum theory of gravity and in recent work significant progress has been achieved in explaining black hole entropy and Hawking radiation from a more fundamental point of view. Work on quantum black holes has led to new relations between strings and non-Abelian gauge theory. This application of string theory has already provided new insights into strongly coupled gauge theories, and it continues to be an exciting area. This book gives intriguing approaches into the unusual forms and behavior of matter under extremely high pressures and temperatures, devoted to more specific topics which arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics. It also presents the studies into the behavior of substances at ultimately high pressures and temperatures obtainable by way of kinetic or electromagnetic energy cumulation in laboratory conditions. Also considered are the diversified states of matter and the processes occurring under gravitational forces and thermonuclear energy release. The book will be of interest to students, novice researchers and all the many young scientists starting their scientific research in this field, providing them with a general, self-sufficient introduction that highlight in particular the basic concepts and ideas."


Strong Light-matter Coupling: From Atoms To Solid-state Systems

Strong Light-matter Coupling: From Atoms To Solid-state Systems

Author: Leong-chuan Kwek

Publisher: World Scientific

Published: 2013-12-23

Total Pages: 304

ISBN-13: 9814460362

DOWNLOAD EBOOK

The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes.This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptual, theoretical and experimental basis on strong light-matter coupling, both in the classical and in the quantum regimes. In addition, the emphasis is on new forefront research topics currently developed around the physics of strong light-matter interaction in the atomic and solid-state scenarios.


Book Synopsis Strong Light-matter Coupling: From Atoms To Solid-state Systems by : Leong-chuan Kwek

Download or read book Strong Light-matter Coupling: From Atoms To Solid-state Systems written by Leong-chuan Kwek and published by World Scientific. This book was released on 2013-12-23 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes.This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptual, theoretical and experimental basis on strong light-matter coupling, both in the classical and in the quantum regimes. In addition, the emphasis is on new forefront research topics currently developed around the physics of strong light-matter interaction in the atomic and solid-state scenarios.


The Standard Model and Beyond

The Standard Model and Beyond

Author: Paul Langacker

Publisher: CRC Press

Published: 2017-06-26

Total Pages: 786

ISBN-13: 1498763243

DOWNLOAD EBOOK

This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examines supersymmetry, extended gauge groups, and grand unification. Thoroughly covering gauge field theories, symmetries, and topics beyond the standard model, this text equips readers with the tools to understand the structure and phenomenological consequences of the standard model, to construct extensions, and to perform calculations at tree level. It establishes the necessary background for readers to carry out more advanced research in particle physics. Supplementary materials are provided on the author’s website and a solutions manual is available for qualifying instructors.


Book Synopsis The Standard Model and Beyond by : Paul Langacker

Download or read book The Standard Model and Beyond written by Paul Langacker and published by CRC Press. This book was released on 2017-06-26 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examines supersymmetry, extended gauge groups, and grand unification. Thoroughly covering gauge field theories, symmetries, and topics beyond the standard model, this text equips readers with the tools to understand the structure and phenomenological consequences of the standard model, to construct extensions, and to perform calculations at tree level. It establishes the necessary background for readers to carry out more advanced research in particle physics. Supplementary materials are provided on the author’s website and a solutions manual is available for qualifying instructors.


Extreme Physics

Extreme Physics

Author: Jeff Colvin

Publisher: Cambridge University Press

Published: 2014

Total Pages: 419

ISBN-13: 1107019672

DOWNLOAD EBOOK

Emphasising computational modeling, this introduction to the physics on matter at extreme conditions is invaluable for researchers and graduate students.


Book Synopsis Extreme Physics by : Jeff Colvin

Download or read book Extreme Physics written by Jeff Colvin and published by Cambridge University Press. This book was released on 2014 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasising computational modeling, this introduction to the physics on matter at extreme conditions is invaluable for researchers and graduate students.