Finite Element Methods for Structures with Large Stochastic Variations

Finite Element Methods for Structures with Large Stochastic Variations

Author: Isaac Elishakoff

Publisher: Oxford University Press, USA

Published: 2003

Total Pages: 282

ISBN-13: 9780198526315

DOWNLOAD EBOOK

The finite element method (FEM) can be successfully applied to various field problems in solid mechanics, fluid mechanics and electrical engineering. This text discusses finite element methods for structures with large stochastic variations.


Book Synopsis Finite Element Methods for Structures with Large Stochastic Variations by : Isaac Elishakoff

Download or read book Finite Element Methods for Structures with Large Stochastic Variations written by Isaac Elishakoff and published by Oxford University Press, USA. This book was released on 2003 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method (FEM) can be successfully applied to various field problems in solid mechanics, fluid mechanics and electrical engineering. This text discusses finite element methods for structures with large stochastic variations.


Structural Analysis with Finite Elements

Structural Analysis with Finite Elements

Author: Friedel Hartmann

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 492

ISBN-13: 366205423X

DOWNLOAD EBOOK

This book provides a solid introduction to the foundation and the application of the finite element method in structural analysis. It offers new theoretical insight and practical advice. This second edition contains additional sections on sensitivity analysis, on retrofitting structures, on the Generalized FEM (X-FEM) and on model adaptivity. An additional chapter treats the boundary element method, and related software is available at www.winfem.de.


Book Synopsis Structural Analysis with Finite Elements by : Friedel Hartmann

Download or read book Structural Analysis with Finite Elements written by Friedel Hartmann and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a solid introduction to the foundation and the application of the finite element method in structural analysis. It offers new theoretical insight and practical advice. This second edition contains additional sections on sensitivity analysis, on retrofitting structures, on the Generalized FEM (X-FEM) and on model adaptivity. An additional chapter treats the boundary element method, and related software is available at www.winfem.de.


Stochastic Structural Dynamics

Stochastic Structural Dynamics

Author: Cho W. S. To

Publisher: John Wiley & Sons

Published: 2013-11-08

Total Pages: 307

ISBN-13: 1118402723

DOWNLOAD EBOOK

One of the first books to provide in-depth and systematic application of finite element methods to the field of stochastic structural dynamics The parallel developments of the Finite Element Methods in the 1950’s and the engineering applications of stochastic processes in the 1940’s provided a combined numerical analysis tool for the studies of dynamics of structures and structural systems under random loadings. In the open literature, there are books on statistical dynamics of structures and books on structural dynamics with chapters dealing with random response analysis. However, a systematic treatment of stochastic structural dynamics applying the finite element methods seems to be lacking. Aimed at advanced and specialist levels, the author presents and illustrates analytical and direct integration methods for analyzing the statistics of the response of structures to stochastic loads. The analysis methods are based on structural models represented via the Finite Element Method. In addition to linear problems the text also addresses nonlinear problems and non-stationary random excitation with systems having large spatially stochastic property variations. A systematic treatment of stochastic structural dynamics applying the finite element methods Highly illustrated throughout and aimed at advanced and specialist levels, it focuses on computational aspects instead of theory Emphasizes results mainly in the time domain with limited contents in the time-frequency domain Presents and illustrates direction integration methods for analyzing the statistics of the response of linear and nonlinear structures to stochastic loads Under Author Information - one change of word to existing text: He is a Fellow of the American Society of Mechanical Engineers (ASME)........


Book Synopsis Stochastic Structural Dynamics by : Cho W. S. To

Download or read book Stochastic Structural Dynamics written by Cho W. S. To and published by John Wiley & Sons. This book was released on 2013-11-08 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the first books to provide in-depth and systematic application of finite element methods to the field of stochastic structural dynamics The parallel developments of the Finite Element Methods in the 1950’s and the engineering applications of stochastic processes in the 1940’s provided a combined numerical analysis tool for the studies of dynamics of structures and structural systems under random loadings. In the open literature, there are books on statistical dynamics of structures and books on structural dynamics with chapters dealing with random response analysis. However, a systematic treatment of stochastic structural dynamics applying the finite element methods seems to be lacking. Aimed at advanced and specialist levels, the author presents and illustrates analytical and direct integration methods for analyzing the statistics of the response of structures to stochastic loads. The analysis methods are based on structural models represented via the Finite Element Method. In addition to linear problems the text also addresses nonlinear problems and non-stationary random excitation with systems having large spatially stochastic property variations. A systematic treatment of stochastic structural dynamics applying the finite element methods Highly illustrated throughout and aimed at advanced and specialist levels, it focuses on computational aspects instead of theory Emphasizes results mainly in the time domain with limited contents in the time-frequency domain Presents and illustrates direction integration methods for analyzing the statistics of the response of linear and nonlinear structures to stochastic loads Under Author Information - one change of word to existing text: He is a Fellow of the American Society of Mechanical Engineers (ASME)........


Stochastic Finite Element Methods

Stochastic Finite Element Methods

Author: Vissarion Papadopoulos

Publisher: Springer

Published: 2017-10-28

Total Pages: 138

ISBN-13: 3319645285

DOWNLOAD EBOOK

The book provides a self-contained treatment of stochastic finite element methods. It helps the reader to establish a solid background on stochastic and reliability analysis of structural systems and enables practicing engineers to better manage the concepts of analysis and design in the presence of uncertainty. The book covers the basic topics of computational stochastic mechanics focusing on the stochastic analysis of structural systems in the framework of the finite element method. The target audience primarily comprises students in a postgraduate program specializing in structural engineering but the book may also be beneficial to practicing engineers and research experts alike.


Book Synopsis Stochastic Finite Element Methods by : Vissarion Papadopoulos

Download or read book Stochastic Finite Element Methods written by Vissarion Papadopoulos and published by Springer. This book was released on 2017-10-28 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a self-contained treatment of stochastic finite element methods. It helps the reader to establish a solid background on stochastic and reliability analysis of structural systems and enables practicing engineers to better manage the concepts of analysis and design in the presence of uncertainty. The book covers the basic topics of computational stochastic mechanics focusing on the stochastic analysis of structural systems in the framework of the finite element method. The target audience primarily comprises students in a postgraduate program specializing in structural engineering but the book may also be beneficial to practicing engineers and research experts alike.


Geometric Mechanics and Symmetry

Geometric Mechanics and Symmetry

Author: Darryl D. Holm

Publisher: Oxford University Press

Published: 2009-07-30

Total Pages:

ISBN-13: 0191549878

DOWNLOAD EBOOK

Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate physical systems, such as n particle systems, rigid bodies, fluids and other continua, and electromagnetic and quantum systems. Geometric Mechanics and Symmetry is a friendly and fast-paced introduction to the geometric approach to classical mechanics, suitable for a one- or two- semester course for beginning graduate students or advanced undergraduates. It fills a gap between traditional classical mechanics texts and advanced modern mathematical treatments of the subject. After a summary of the necessary elements of calculus on smooth manifolds and basic Lie group theory, the main body of the text considers how symmetry reduction of Hamilton's principle allows one to derive and analyze the Euler-Poincaré equations for dynamics on Lie groups. Additional topics deal with rigid and pseudo-rigid bodies, the heavy top, shallow water waves, geophysical fluid dynamics and computational anatomy. The text ends with a discussion of the semidirect-product Euler-Poincaré reduction theorem for ideal fluid dynamics. A variety of examples and figures illustrate the material, while the many exercises, both solved and unsolved, make the book a valuable class text.


Book Synopsis Geometric Mechanics and Symmetry by : Darryl D. Holm

Download or read book Geometric Mechanics and Symmetry written by Darryl D. Holm and published by Oxford University Press. This book was released on 2009-07-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate physical systems, such as n particle systems, rigid bodies, fluids and other continua, and electromagnetic and quantum systems. Geometric Mechanics and Symmetry is a friendly and fast-paced introduction to the geometric approach to classical mechanics, suitable for a one- or two- semester course for beginning graduate students or advanced undergraduates. It fills a gap between traditional classical mechanics texts and advanced modern mathematical treatments of the subject. After a summary of the necessary elements of calculus on smooth manifolds and basic Lie group theory, the main body of the text considers how symmetry reduction of Hamilton's principle allows one to derive and analyze the Euler-Poincaré equations for dynamics on Lie groups. Additional topics deal with rigid and pseudo-rigid bodies, the heavy top, shallow water waves, geophysical fluid dynamics and computational anatomy. The text ends with a discussion of the semidirect-product Euler-Poincaré reduction theorem for ideal fluid dynamics. A variety of examples and figures illustrate the material, while the many exercises, both solved and unsolved, make the book a valuable class text.


Friction Dynamics

Friction Dynamics

Author: Xiandong Liu

Publisher: Woodhead Publishing

Published: 2016-07-20

Total Pages: 316

ISBN-13: 0081002831

DOWNLOAD EBOOK

Friction Dynamics: Principles and Applications introduces readers to the basic principles of friction dynamics, which are presented in a unified theoretical framework focusing on some of the most important engineering applications. The book's chapters introduce basic concepts and analytical methods of friction dynamics, followed by sections that explore the fundamental principles of frictions. Concluding chapters focus on engineering applications in brake dynamics, the friction dynamics of rods used in oil suck pump systems, and the friction impact dynamics of rotors. This book provides comprehensive topics and up-to-date results, also presenting a thorough account of important advancements in friction dynamics which offer insights into varied dynamic phenomena, helping readers effectively design and fabricate stable and durable friction systems and components for various engineering and scientific friction dynamical systems. Investigates the most critical engineering and scientific applications Provides the most comprehensive reference of its kind Offers a systematic treatment and a unified framework Explores cutting-edge methodologies to address non-stationary, non-linear dynamics and control


Book Synopsis Friction Dynamics by : Xiandong Liu

Download or read book Friction Dynamics written by Xiandong Liu and published by Woodhead Publishing. This book was released on 2016-07-20 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Friction Dynamics: Principles and Applications introduces readers to the basic principles of friction dynamics, which are presented in a unified theoretical framework focusing on some of the most important engineering applications. The book's chapters introduce basic concepts and analytical methods of friction dynamics, followed by sections that explore the fundamental principles of frictions. Concluding chapters focus on engineering applications in brake dynamics, the friction dynamics of rods used in oil suck pump systems, and the friction impact dynamics of rotors. This book provides comprehensive topics and up-to-date results, also presenting a thorough account of important advancements in friction dynamics which offer insights into varied dynamic phenomena, helping readers effectively design and fabricate stable and durable friction systems and components for various engineering and scientific friction dynamical systems. Investigates the most critical engineering and scientific applications Provides the most comprehensive reference of its kind Offers a systematic treatment and a unified framework Explores cutting-edge methodologies to address non-stationary, non-linear dynamics and control


Introduction to Parallel Computing

Introduction to Parallel Computing

Author: Wesley Petersen

Publisher: OUP Oxford

Published: 2004-01-08

Total Pages: 278

ISBN-13: 019151361X

DOWNLOAD EBOOK

In the last few years, courses on parallel computation have been developed and offered in many institutions in the UK, Europe and US as a recognition of the growing significance of this topic in mathematics and computer science. There is a clear need for texts that meet the needs of students and lecturers and this book, based on the author's lecture at ETH Zurich, is an ideal practical student guide to scientific computing on parallel computers working up from a hardware instruction level, to shared memory machines, and finally to distributed memory machines. Aimed at advanced undergraduate and graduate students in applied mathematics, computer science, and engineering, subjects covered include linear algebra, fast Fourier transform, and Monte-Carlo simulations, including examples in C and, in some cases, Fortran. This book is also ideal for practitioners and programmers.


Book Synopsis Introduction to Parallel Computing by : Wesley Petersen

Download or read book Introduction to Parallel Computing written by Wesley Petersen and published by OUP Oxford. This book was released on 2004-01-08 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years, courses on parallel computation have been developed and offered in many institutions in the UK, Europe and US as a recognition of the growing significance of this topic in mathematics and computer science. There is a clear need for texts that meet the needs of students and lecturers and this book, based on the author's lecture at ETH Zurich, is an ideal practical student guide to scientific computing on parallel computers working up from a hardware instruction level, to shared memory machines, and finally to distributed memory machines. Aimed at advanced undergraduate and graduate students in applied mathematics, computer science, and engineering, subjects covered include linear algebra, fast Fourier transform, and Monte-Carlo simulations, including examples in C and, in some cases, Fortran. This book is also ideal for practitioners and programmers.


Disc Brake Squeal

Disc Brake Squeal

Author: Frank Chen

Publisher: SAE International

Published: 2005-12-13

Total Pages: 418

ISBN-13: 0768054575

DOWNLOAD EBOOK

Chapters written by professional and academic experts in the field cover: analytical modeling and analysis, CEA modeling and numerical methods, techniques for dynamometer and road test evaluation, critical parameters that contribute to brake squeal, robust design processes to reduce/prevent brake squeal via up-front design, and more.


Book Synopsis Disc Brake Squeal by : Frank Chen

Download or read book Disc Brake Squeal written by Frank Chen and published by SAE International. This book was released on 2005-12-13 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapters written by professional and academic experts in the field cover: analytical modeling and analysis, CEA modeling and numerical methods, techniques for dynamometer and road test evaluation, critical parameters that contribute to brake squeal, robust design processes to reduce/prevent brake squeal via up-front design, and more.


Multiscale Modeling and Uncertainty Quantification of Materials and Structures

Multiscale Modeling and Uncertainty Quantification of Materials and Structures

Author: Manolis Papadrakakis

Publisher: Springer

Published: 2014-07-02

Total Pages: 303

ISBN-13: 3319063316

DOWNLOAD EBOOK

This book contains the proceedings of the IUTAM Symposium on Multiscale Modeling and Uncertainty Quantification of Materials and Structures that was held at Santorini, Greece, September 9 – 11, 2013. It consists of 20 chapters which are divided in five thematic topics: Damage and fracture, homogenization, inverse problems–identification, multiscale stochastic mechanics and stochastic dynamics. Over the last few years, the intense research activity at micro scale and nano scale reflected the need to account for disparate levels of uncertainty from various sources and across scales. As even over-refined deterministic approaches are not able to account for this issue, an efficient blending of stochastic and multiscale methodologies is required to provide a rational framework for the analysis and design of materials and structures. The purpose of this IUTAM Symposium was to promote achievements in uncertainty quantification combined with multiscale modeling and to encourage research and development in this growing field with the aim of improving the safety and reliability of engineered materials and structures. Special emphasis was placed on multiscale material modeling and simulation as well as on the multiscale analysis and uncertainty quantification of fracture mechanics of heterogeneous media. The homogenization of two-phase random media was also thoroughly examined in several presentations. Various topics of multiscale stochastic mechanics, such as identification of material models, scale coupling, modeling of random microstructures, analysis of CNT-reinforced composites and stochastic finite elements, have been analyzed and discussed. A large number of papers were finally devoted to innovative methods in stochastic dynamics.


Book Synopsis Multiscale Modeling and Uncertainty Quantification of Materials and Structures by : Manolis Papadrakakis

Download or read book Multiscale Modeling and Uncertainty Quantification of Materials and Structures written by Manolis Papadrakakis and published by Springer. This book was released on 2014-07-02 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the IUTAM Symposium on Multiscale Modeling and Uncertainty Quantification of Materials and Structures that was held at Santorini, Greece, September 9 – 11, 2013. It consists of 20 chapters which are divided in five thematic topics: Damage and fracture, homogenization, inverse problems–identification, multiscale stochastic mechanics and stochastic dynamics. Over the last few years, the intense research activity at micro scale and nano scale reflected the need to account for disparate levels of uncertainty from various sources and across scales. As even over-refined deterministic approaches are not able to account for this issue, an efficient blending of stochastic and multiscale methodologies is required to provide a rational framework for the analysis and design of materials and structures. The purpose of this IUTAM Symposium was to promote achievements in uncertainty quantification combined with multiscale modeling and to encourage research and development in this growing field with the aim of improving the safety and reliability of engineered materials and structures. Special emphasis was placed on multiscale material modeling and simulation as well as on the multiscale analysis and uncertainty quantification of fracture mechanics of heterogeneous media. The homogenization of two-phase random media was also thoroughly examined in several presentations. Various topics of multiscale stochastic mechanics, such as identification of material models, scale coupling, modeling of random microstructures, analysis of CNT-reinforced composites and stochastic finite elements, have been analyzed and discussed. A large number of papers were finally devoted to innovative methods in stochastic dynamics.


Advanced Theoretical and Computational Methods for Complex Materials and Structures

Advanced Theoretical and Computational Methods for Complex Materials and Structures

Author: Francesco Tornabene

Publisher: MDPI

Published: 2021-08-30

Total Pages: 180

ISBN-13: 3036511180

DOWNLOAD EBOOK

The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length scales and non-local behaviors, with great sensitivity to different staking sequences, ply orientations, agglomeration of nanoparticles, volume fractions of constituents, and porosity levels, among others. In addition to fiber-reinforced composites and laminates, increased attention has been paid in literature to the study of innovative components such as functionally graded materials (FGMs), carbon nanotubes (CNTs), graphene nanoplatelets, and smart constituents. Some examples of smart applications involve large stroke smart actuators, piezoelectric sensors, shape memory alloys, magnetostrictive and electrostrictive materials, as well as auxetic components and angle-tow laminates. These constituents can be included in the lamination schemes of smart structures to control and monitor the vibrational behavior or the static deflection of several composites. The development of advanced theoretical and computational models for composite materials and structures is a subject of active research and this is explored here for different complex systems, including their static, dynamic, and buckling responses; fracture mechanics at different scales; the adhesion, cohesion, and delamination of materials and interfaces.


Book Synopsis Advanced Theoretical and Computational Methods for Complex Materials and Structures by : Francesco Tornabene

Download or read book Advanced Theoretical and Computational Methods for Complex Materials and Structures written by Francesco Tornabene and published by MDPI. This book was released on 2021-08-30 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length scales and non-local behaviors, with great sensitivity to different staking sequences, ply orientations, agglomeration of nanoparticles, volume fractions of constituents, and porosity levels, among others. In addition to fiber-reinforced composites and laminates, increased attention has been paid in literature to the study of innovative components such as functionally graded materials (FGMs), carbon nanotubes (CNTs), graphene nanoplatelets, and smart constituents. Some examples of smart applications involve large stroke smart actuators, piezoelectric sensors, shape memory alloys, magnetostrictive and electrostrictive materials, as well as auxetic components and angle-tow laminates. These constituents can be included in the lamination schemes of smart structures to control and monitor the vibrational behavior or the static deflection of several composites. The development of advanced theoretical and computational models for composite materials and structures is a subject of active research and this is explored here for different complex systems, including their static, dynamic, and buckling responses; fracture mechanics at different scales; the adhesion, cohesion, and delamination of materials and interfaces.