Finite Element Modeling of Nanotube Structures

Finite Element Modeling of Nanotube Structures

Author: Mokhtar Awang

Publisher: Springer

Published: 2015-10-24

Total Pages: 216

ISBN-13: 331903197X

DOWNLOAD EBOOK

This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.


Book Synopsis Finite Element Modeling of Nanotube Structures by : Mokhtar Awang

Download or read book Finite Element Modeling of Nanotube Structures written by Mokhtar Awang and published by Springer. This book was released on 2015-10-24 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.


Computational Finite Element Methods in Nanotechnology

Computational Finite Element Methods in Nanotechnology

Author: Sarhan M. Musa

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 640

ISBN-13: 1439893268

DOWNLOAD EBOOK

Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.


Book Synopsis Computational Finite Element Methods in Nanotechnology by : Sarhan M. Musa

Download or read book Computational Finite Element Methods in Nanotechnology written by Sarhan M. Musa and published by CRC Press. This book was released on 2017-12-19 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.


Constitutive Modeling of Nanotube-reinforced Polymer Composite Systems

Constitutive Modeling of Nanotube-reinforced Polymer Composite Systems

Author: Gregory M. Odegard

Publisher:

Published: 2001

Total Pages: 20

ISBN-13:

DOWNLOAD EBOOK

In this study, a technique has been proposed for developing constitive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method.


Book Synopsis Constitutive Modeling of Nanotube-reinforced Polymer Composite Systems by : Gregory M. Odegard

Download or read book Constitutive Modeling of Nanotube-reinforced Polymer Composite Systems written by Gregory M. Odegard and published by . This book was released on 2001 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, a technique has been proposed for developing constitive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method.


Finite Element Modeling of Carbon Nanotube Reinforced Polymer Composites and Evaluating Its Thermal Conductivities

Finite Element Modeling of Carbon Nanotube Reinforced Polymer Composites and Evaluating Its Thermal Conductivities

Author: Raghuram Basavanahalli

Publisher:

Published: 2006

Total Pages:

ISBN-13: 9780542946585

DOWNLOAD EBOOK

High thermal conductivity of carbon nanotubes has motivated us to study and understand the thermal mechanisms in nanocomposites. Though several theoretical models predict a high thermal conductivity for CNT reinforced polymer composites, the experimental validation are not so encouraging. A finite element model of MWNT reinforced nanocomposite is developed based on continuum mechanics approach. The finite element model is a representative volume element (RVE) with single MWNT inclusion. The inclusion is modeled based on the continuum model of MWNT as effective solid fiber [22]. The interface resistance between the nanotube and the matrix material is modeled using thermal contact elements. The finite element analysis was carried out keeping volume fraction of MWNT fibers as constant and varying three important parameters which influences the effective thermal conductivity. Analysis with varying volume fractions of CNT fibers was also carried out to study the influence of volume fraction. The results obtained were in agreeable range with the theoretical calculations made based on the work of Bagchi and Nomura [22]. The effective thermal conductivity of MWNT reinforced nanocomposites with MWNTs of high aspect ratios showed gradual increase in conductivity with increase in length while it showed a drastic decrease in effective thermal conductivity with increase in the diameter of the MWNT inclusion. The finite element analysis showed that the interface resistance between the nanotube and the matrix material does not affect effective thermal conductivity noticeably which is contradictory with few theoretical models which attribute interface resistance for lower than expected effective thermal conductivity. The analysis predicts linear increase of effective thermal conductivity with increase in volume fraction of the MWNT fibers in matrix material; this is also in accordance with the theoretical model. The above analysis also validates the use of finite element approach based on continuum mechanics in studying the overall behavior of the nanocomposites.


Book Synopsis Finite Element Modeling of Carbon Nanotube Reinforced Polymer Composites and Evaluating Its Thermal Conductivities by : Raghuram Basavanahalli

Download or read book Finite Element Modeling of Carbon Nanotube Reinforced Polymer Composites and Evaluating Its Thermal Conductivities written by Raghuram Basavanahalli and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: High thermal conductivity of carbon nanotubes has motivated us to study and understand the thermal mechanisms in nanocomposites. Though several theoretical models predict a high thermal conductivity for CNT reinforced polymer composites, the experimental validation are not so encouraging. A finite element model of MWNT reinforced nanocomposite is developed based on continuum mechanics approach. The finite element model is a representative volume element (RVE) with single MWNT inclusion. The inclusion is modeled based on the continuum model of MWNT as effective solid fiber [22]. The interface resistance between the nanotube and the matrix material is modeled using thermal contact elements. The finite element analysis was carried out keeping volume fraction of MWNT fibers as constant and varying three important parameters which influences the effective thermal conductivity. Analysis with varying volume fractions of CNT fibers was also carried out to study the influence of volume fraction. The results obtained were in agreeable range with the theoretical calculations made based on the work of Bagchi and Nomura [22]. The effective thermal conductivity of MWNT reinforced nanocomposites with MWNTs of high aspect ratios showed gradual increase in conductivity with increase in length while it showed a drastic decrease in effective thermal conductivity with increase in the diameter of the MWNT inclusion. The finite element analysis showed that the interface resistance between the nanotube and the matrix material does not affect effective thermal conductivity noticeably which is contradictory with few theoretical models which attribute interface resistance for lower than expected effective thermal conductivity. The analysis predicts linear increase of effective thermal conductivity with increase in volume fraction of the MWNT fibers in matrix material; this is also in accordance with the theoretical model. The above analysis also validates the use of finite element approach based on continuum mechanics in studying the overall behavior of the nanocomposites.


Carbon Nanotube-Reinforced Polymers

Carbon Nanotube-Reinforced Polymers

Author: Roham Rafiee

Publisher: Elsevier

Published: 2017-10-06

Total Pages: 588

ISBN-13: 0323482228

DOWNLOAD EBOOK

Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components Analyzes the behavior of carbon nanotube-based composites in different conditions


Book Synopsis Carbon Nanotube-Reinforced Polymers by : Roham Rafiee

Download or read book Carbon Nanotube-Reinforced Polymers written by Roham Rafiee and published by Elsevier. This book was released on 2017-10-06 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components Analyzes the behavior of carbon nanotube-based composites in different conditions


Relación descriptiva de la función de jura del señor Don Fernando VII

Relación descriptiva de la función de jura del señor Don Fernando VII

Author:

Publisher:

Published: 1808

Total Pages: 12

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Relación descriptiva de la función de jura del señor Don Fernando VII by :

Download or read book Relación descriptiva de la función de jura del señor Don Fernando VII written by and published by . This book was released on 1808 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Modeling of Carbon Nanotubes, Graphene and their Composites

Modeling of Carbon Nanotubes, Graphene and their Composites

Author: Konstantinos I. Tserpes

Publisher: Springer Science & Business Media

Published: 2013-10-15

Total Pages: 341

ISBN-13: 3319012010

DOWNLOAD EBOOK

A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes and their applications. In this process, modeling is a very attractive investigation tool due to the difficulties in manufacturing and testing of nanomaterials. Continuum modeling offers significant advantages over atomistic modeling. Furthermore, the lack of accuracy in continuum methods can be overtaken by incorporating input data either from experiments or atomistic methods. This book reviews the recent progress in continuum modeling of carbon nanotubes and their composites. The advantages and disadvantages of continuum methods over atomistic methods are comprehensively discussed. Numerical models, mainly based on the finite element method, as well as analytical models are presented in a comparative way starting from the simulation of isolated pristine and defected nanotubes and proceeding to nanotube-based composites. The ability of continuum methods to bridge different scales is emphasized. Recommendations for future research are given by focusing on what still continuum methods have to learn from the nano-scale. The scope of the book is to provide current knowledge aiming to support researchers entering the scientific area of carbon nanotubes to choose the appropriate modeling tool for accomplishing their study and place their efforts to further improve continuum methods.


Book Synopsis Modeling of Carbon Nanotubes, Graphene and their Composites by : Konstantinos I. Tserpes

Download or read book Modeling of Carbon Nanotubes, Graphene and their Composites written by Konstantinos I. Tserpes and published by Springer Science & Business Media. This book was released on 2013-10-15 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes and their applications. In this process, modeling is a very attractive investigation tool due to the difficulties in manufacturing and testing of nanomaterials. Continuum modeling offers significant advantages over atomistic modeling. Furthermore, the lack of accuracy in continuum methods can be overtaken by incorporating input data either from experiments or atomistic methods. This book reviews the recent progress in continuum modeling of carbon nanotubes and their composites. The advantages and disadvantages of continuum methods over atomistic methods are comprehensively discussed. Numerical models, mainly based on the finite element method, as well as analytical models are presented in a comparative way starting from the simulation of isolated pristine and defected nanotubes and proceeding to nanotube-based composites. The ability of continuum methods to bridge different scales is emphasized. Recommendations for future research are given by focusing on what still continuum methods have to learn from the nano-scale. The scope of the book is to provide current knowledge aiming to support researchers entering the scientific area of carbon nanotubes to choose the appropriate modeling tool for accomplishing their study and place their efforts to further improve continuum methods.


Characterization of Carbon Nanotube Based Composites under Consideration of Defects

Characterization of Carbon Nanotube Based Composites under Consideration of Defects

Author: Moones Rahmandoust

Publisher: Springer

Published: 2015-10-14

Total Pages: 246

ISBN-13: 3319002511

DOWNLOAD EBOOK

This volume presents the characterization methods involved with carbon nanotubes and carbon nanotube-based composites, with a more detailed look at computational mechanics approaches, namely the finite element method. Special emphasis is placed on studies that consider the extent to which imperfections in the structure of the nanomaterials affect their mechanical properties. These defects may include random distribution of fibers in the composite structure, as well as atom vacancies, perturbation and doping in the structure of individual carbon nanotubes.


Book Synopsis Characterization of Carbon Nanotube Based Composites under Consideration of Defects by : Moones Rahmandoust

Download or read book Characterization of Carbon Nanotube Based Composites under Consideration of Defects written by Moones Rahmandoust and published by Springer. This book was released on 2015-10-14 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the characterization methods involved with carbon nanotubes and carbon nanotube-based composites, with a more detailed look at computational mechanics approaches, namely the finite element method. Special emphasis is placed on studies that consider the extent to which imperfections in the structure of the nanomaterials affect their mechanical properties. These defects may include random distribution of fibers in the composite structure, as well as atom vacancies, perturbation and doping in the structure of individual carbon nanotubes.


Nanoengineering of Structural, Functional and Smart Materials

Nanoengineering of Structural, Functional and Smart Materials

Author: Mark J. Schulz

Publisher: CRC Press

Published: 2005-08-29

Total Pages: 740

ISBN-13: 0203491963

DOWNLOAD EBOOK

In chapters contributed by 24 university & government laboratories, Nanoengineering of Structural, Functional, and Smart Materials combines wide-ranging research aimed at the development of multifunctional materials that are strong, lightweight, and versatile. This book explores promising and diverse approaches to the design of nanoscale


Book Synopsis Nanoengineering of Structural, Functional and Smart Materials by : Mark J. Schulz

Download or read book Nanoengineering of Structural, Functional and Smart Materials written by Mark J. Schulz and published by CRC Press. This book was released on 2005-08-29 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: In chapters contributed by 24 university & government laboratories, Nanoengineering of Structural, Functional, and Smart Materials combines wide-ranging research aimed at the development of multifunctional materials that are strong, lightweight, and versatile. This book explores promising and diverse approaches to the design of nanoscale


Mesh-Free and Finite Element-Based Methods for Structural Mechanics Applications

Mesh-Free and Finite Element-Based Methods for Structural Mechanics Applications

Author: Nicholas Fantuzzi

Publisher: MDPI

Published: 2021-01-27

Total Pages: 220

ISBN-13: 3036501363

DOWNLOAD EBOOK

The problem of solving complex engineering problems has always been a major topic in all industrial fields, such as aerospace, civil and mechanical engineering. The use of numerical methods has increased exponentially in the last few years, due to modern computers in the field of structural mechanics. Moreover, a wide range of numerical methods have been presented in the literature for solving such problems. Structural mechanics problems are dealt with using partial differential systems of equations that might be solved by following the two main classes of methods: Domain-decomposition methods or the so-called finite element methods and mesh-free methods where no decomposition is carried out. Both methodologies discretize a partial differential system into a set of algebraic equations that can be easily solved by computer implementation. The aim of the present Special Issue is to present a collection of recent works on these themes and a comparison of the novel advancements of both worlds in structural mechanics applications.


Book Synopsis Mesh-Free and Finite Element-Based Methods for Structural Mechanics Applications by : Nicholas Fantuzzi

Download or read book Mesh-Free and Finite Element-Based Methods for Structural Mechanics Applications written by Nicholas Fantuzzi and published by MDPI. This book was released on 2021-01-27 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of solving complex engineering problems has always been a major topic in all industrial fields, such as aerospace, civil and mechanical engineering. The use of numerical methods has increased exponentially in the last few years, due to modern computers in the field of structural mechanics. Moreover, a wide range of numerical methods have been presented in the literature for solving such problems. Structural mechanics problems are dealt with using partial differential systems of equations that might be solved by following the two main classes of methods: Domain-decomposition methods or the so-called finite element methods and mesh-free methods where no decomposition is carried out. Both methodologies discretize a partial differential system into a set of algebraic equations that can be easily solved by computer implementation. The aim of the present Special Issue is to present a collection of recent works on these themes and a comparison of the novel advancements of both worlds in structural mechanics applications.