Finite Element Simulation of Heat Transfer

Finite Element Simulation of Heat Transfer

Author: Jean-Michel Bergheau

Publisher: Wiley-ISTE

Published: 2008-09-09

Total Pages: 296

ISBN-13:

DOWNLOAD EBOOK

This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena). A review of the various thermal phenomena is drawn up, which an engineer can simulate. The methods presented will enable the reader to achieve optimal use from finite element software and also to develop new applications.


Book Synopsis Finite Element Simulation of Heat Transfer by : Jean-Michel Bergheau

Download or read book Finite Element Simulation of Heat Transfer written by Jean-Michel Bergheau and published by Wiley-ISTE. This book was released on 2008-09-09 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena). A review of the various thermal phenomena is drawn up, which an engineer can simulate. The methods presented will enable the reader to achieve optimal use from finite element software and also to develop new applications.


Finite Element Simulation of Heat Transfer

Finite Element Simulation of Heat Transfer

Author: Jean-Michel Bergheau

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 291

ISBN-13: 1118623428

DOWNLOAD EBOOK

This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena). A review of the various thermal phenomena is drawn up, which an engineer can simulate. The methods presented will enable the reader to achieve optimal use from finite element software and also to develop new applications.


Book Synopsis Finite Element Simulation of Heat Transfer by : Jean-Michel Bergheau

Download or read book Finite Element Simulation of Heat Transfer written by Jean-Michel Bergheau and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena). A review of the various thermal phenomena is drawn up, which an engineer can simulate. The methods presented will enable the reader to achieve optimal use from finite element software and also to develop new applications.


Finite Element Analysis for Heat Transfer

Finite Element Analysis for Heat Transfer

Author: Hou-Cheng Huang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 205

ISBN-13: 1447120914

DOWNLOAD EBOOK

This text presents an introduction to the application of the finite ele ment method to the analysis of heat transfer problems. The discussion has been limited to diffusion and convection type of heat transfer in solids and fluids. The main motivation of writing this book stems from two facts. Firstly, we have not come across any other text which provides an intro duction to the finite element method (FEM) solely from a heat transfer perspective. Most introductory texts attempt to teach FEM from a struc tural engineering background, which may distract non-structural engineers from pursuing this important subject with full enthusiasm. We feel that our approach provides a better alternative for non-structural engineers. Secondly, for people who are interested in using FEM for heat transfer, we have attempted to cover a wide range of topics, presenting the essential the ory and full implementational details including two FORTRAN programs. In addition to the basic FEM heat transfer concepts and implementation, we have also presented some modem techniques which are being used to enhance the accuracy and speed of the conventional method. In writing the text we have endeavoured to keep it accessible to persons with qualifications of no more than an engineering graduate. As mentioned earlier this book may be used to learn FEM by beginners, this may include undergraduate students and practicing engineers. However, there is enough advanced material to interest more experienced practitioners.


Book Synopsis Finite Element Analysis for Heat Transfer by : Hou-Cheng Huang

Download or read book Finite Element Analysis for Heat Transfer written by Hou-Cheng Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents an introduction to the application of the finite ele ment method to the analysis of heat transfer problems. The discussion has been limited to diffusion and convection type of heat transfer in solids and fluids. The main motivation of writing this book stems from two facts. Firstly, we have not come across any other text which provides an intro duction to the finite element method (FEM) solely from a heat transfer perspective. Most introductory texts attempt to teach FEM from a struc tural engineering background, which may distract non-structural engineers from pursuing this important subject with full enthusiasm. We feel that our approach provides a better alternative for non-structural engineers. Secondly, for people who are interested in using FEM for heat transfer, we have attempted to cover a wide range of topics, presenting the essential the ory and full implementational details including two FORTRAN programs. In addition to the basic FEM heat transfer concepts and implementation, we have also presented some modem techniques which are being used to enhance the accuracy and speed of the conventional method. In writing the text we have endeavoured to keep it accessible to persons with qualifications of no more than an engineering graduate. As mentioned earlier this book may be used to learn FEM by beginners, this may include undergraduate students and practicing engineers. However, there is enough advanced material to interest more experienced practitioners.


Finite Element Analysis In Heat Transfer

Finite Element Analysis In Heat Transfer

Author: Gianni Comini

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 464

ISBN-13: 1482252546

DOWNLOAD EBOOK

This introductory text presents the applications of the finite element method to the analysis of conduction and convection problems. The book is divided into seven chapters which include basic ideas, application of these ideas to relevant problems, and development of solutions. Important concepts are illustrated with examples. Computer problems are also included to facilitate the types of solutions discussed.


Book Synopsis Finite Element Analysis In Heat Transfer by : Gianni Comini

Download or read book Finite Element Analysis In Heat Transfer written by Gianni Comini and published by CRC Press. This book was released on 2018-10-08 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text presents the applications of the finite element method to the analysis of conduction and convection problems. The book is divided into seven chapters which include basic ideas, application of these ideas to relevant problems, and development of solutions. Important concepts are illustrated with examples. Computer problems are also included to facilitate the types of solutions discussed.


The Finite Element Method in Heat Transfer Analysis

The Finite Element Method in Heat Transfer Analysis

Author: Roland W. Lewis

Publisher: John Wiley & Sons

Published: 1996-08-06

Total Pages: 296

ISBN-13: 9780471943624

DOWNLOAD EBOOK

Heat transfer analysis is a problem of major significance in a vast range of industrial applications. These extend over the fields of mechanical engineering, aeronautical engineering, chemical engineering and numerous applications in civil and electrical engineering. If one considers the heat conduction equation alone the number of practical problems amenable to solution is extensive. Expansion of the work to include features such as phase change, coupled heat and mass transfer, and thermal stress analysis provides the engineer with the capability to address a further series of key engineering problems. The complexity of practical problems is such that closed form solutions are not generally possible. The use of numerical techniques to solve such problems is therefore considered essential, and this book presents the use of the powerful finite element method in heat transfer analysis. Starting with the fundamental general heat conduction equation, the book moves on to consider the solution of linear steady state heat conduction problems, transient analyses and non-linear examples. Problems of melting and solidification are then considered at length followed by a chapter on convection. The application of heat and mass transfer to drying problems and the calculation of both thermal and shrinkage stresses conclude the book. Numerical examples are used to illustrate the basic concepts introduced. This book is the outcome of the teaching and research experience of the authors over a period of more than 20 years.


Book Synopsis The Finite Element Method in Heat Transfer Analysis by : Roland W. Lewis

Download or read book The Finite Element Method in Heat Transfer Analysis written by Roland W. Lewis and published by John Wiley & Sons. This book was released on 1996-08-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat transfer analysis is a problem of major significance in a vast range of industrial applications. These extend over the fields of mechanical engineering, aeronautical engineering, chemical engineering and numerous applications in civil and electrical engineering. If one considers the heat conduction equation alone the number of practical problems amenable to solution is extensive. Expansion of the work to include features such as phase change, coupled heat and mass transfer, and thermal stress analysis provides the engineer with the capability to address a further series of key engineering problems. The complexity of practical problems is such that closed form solutions are not generally possible. The use of numerical techniques to solve such problems is therefore considered essential, and this book presents the use of the powerful finite element method in heat transfer analysis. Starting with the fundamental general heat conduction equation, the book moves on to consider the solution of linear steady state heat conduction problems, transient analyses and non-linear examples. Problems of melting and solidification are then considered at length followed by a chapter on convection. The application of heat and mass transfer to drying problems and the calculation of both thermal and shrinkage stresses conclude the book. Numerical examples are used to illustrate the basic concepts introduced. This book is the outcome of the teaching and research experience of the authors over a period of more than 20 years.


Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Author: Ben Q. Li

Publisher: Springer Science & Business Media

Published: 2006-06-29

Total Pages: 587

ISBN-13: 1846282055

DOWNLOAD EBOOK

Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.


Book Synopsis Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer by : Ben Q. Li

Download or read book Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer written by Ben Q. Li and published by Springer Science & Business Media. This book was released on 2006-06-29 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.


Fundamentals of the Finite Element Method for Heat and Fluid Flow

Fundamentals of the Finite Element Method for Heat and Fluid Flow

Author: Roland W. Lewis

Publisher: John Wiley and Sons

Published: 2008-02-07

Total Pages: 357

ISBN-13: 0470346388

DOWNLOAD EBOOK

Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.


Book Synopsis Fundamentals of the Finite Element Method for Heat and Fluid Flow by : Roland W. Lewis

Download or read book Fundamentals of the Finite Element Method for Heat and Fluid Flow written by Roland W. Lewis and published by John Wiley and Sons. This book was released on 2008-02-07 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.


Finite Element Simulations Using ANSYS

Finite Element Simulations Using ANSYS

Author: Esam M. Alawadhi

Publisher: CRC Press

Published: 2015-09-18

Total Pages: 429

ISBN-13: 1482261987

DOWNLOAD EBOOK

Uses a Step-By-Step Technique Directed with Guided Problems and Relevant Screen Shots Simulation use is on the rise, and more practicing professionals are depending on the reliability of software to help them tackle real-world mechanical engineering problems. Finite Element Simulations Using ANSYS, Second Edition offers a basic understanding of the


Book Synopsis Finite Element Simulations Using ANSYS by : Esam M. Alawadhi

Download or read book Finite Element Simulations Using ANSYS written by Esam M. Alawadhi and published by CRC Press. This book was released on 2015-09-18 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uses a Step-By-Step Technique Directed with Guided Problems and Relevant Screen Shots Simulation use is on the rise, and more practicing professionals are depending on the reliability of software to help them tackle real-world mechanical engineering problems. Finite Element Simulations Using ANSYS, Second Edition offers a basic understanding of the


Finite Element Simulation of Heat Transfer in Ferrofluid

Finite Element Simulation of Heat Transfer in Ferrofluid

Author: Tomasz Strek

Publisher:

Published: 2008

Total Pages:

ISBN-13: 9783902613257

DOWNLOAD EBOOK

We have simulated two-dimensional heat transfer in ferrofluid channel flow under the influence of the magnetic field created by magnetic dipole using computational fluid dynamics code COMSOL based on finite element method. At the left end of rectangular channel there was assumed a parabolic laminar flow profile. The upper plate was kept at constant temperature Tu and the lower at Tl . The flow was relatively uninfluenced by the magnetic field until its strength was large enough for the Kelvin body force to overcome the viscous force. The magnetoconvection was induced by the presence of magnetic field gradient. We observed that the cooler ferrofluid flows in the direction of the magnetic field gradient and displaced hotter ferrofluid. Ferrofluids have promising potential for heat transfer applications because a ferrofluid flow can be controlled by using an external magnetic field. The Kelvin body force arises from the interaction between the local magnetic field within the ferrofluid and the molecular magnetic moments characterized by the magnetization. An imposed thermal gradient produces a spatial variation in the magnetization through the temperature-dependent magnetic susceptibility for ferrofluids and therefore renders the Kelvin body force non-uniform spatially. This thermal gradient induced inhomogeneous magnetic body force can promote or inhibit convection in a manner similar to the gravitational body force. A strong magnet placed near the device which produces heat will always attract colder ferrofluid towards it more than warmer ferrofluid thus forcing the heated ferrofluid away, towards the heat sink. This is an efficient cooling method which requires no additional energy input.


Book Synopsis Finite Element Simulation of Heat Transfer in Ferrofluid by : Tomasz Strek

Download or read book Finite Element Simulation of Heat Transfer in Ferrofluid written by Tomasz Strek and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We have simulated two-dimensional heat transfer in ferrofluid channel flow under the influence of the magnetic field created by magnetic dipole using computational fluid dynamics code COMSOL based on finite element method. At the left end of rectangular channel there was assumed a parabolic laminar flow profile. The upper plate was kept at constant temperature Tu and the lower at Tl . The flow was relatively uninfluenced by the magnetic field until its strength was large enough for the Kelvin body force to overcome the viscous force. The magnetoconvection was induced by the presence of magnetic field gradient. We observed that the cooler ferrofluid flows in the direction of the magnetic field gradient and displaced hotter ferrofluid. Ferrofluids have promising potential for heat transfer applications because a ferrofluid flow can be controlled by using an external magnetic field. The Kelvin body force arises from the interaction between the local magnetic field within the ferrofluid and the molecular magnetic moments characterized by the magnetization. An imposed thermal gradient produces a spatial variation in the magnetization through the temperature-dependent magnetic susceptibility for ferrofluids and therefore renders the Kelvin body force non-uniform spatially. This thermal gradient induced inhomogeneous magnetic body force can promote or inhibit convection in a manner similar to the gravitational body force. A strong magnet placed near the device which produces heat will always attract colder ferrofluid towards it more than warmer ferrofluid thus forcing the heated ferrofluid away, towards the heat sink. This is an efficient cooling method which requires no additional energy input.


The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition

The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition

Author: J. N. Reddy

Publisher: CRC Press

Published: 2010-04-06

Total Pages: 515

ISBN-13: 1420085980

DOWNLOAD EBOOK

As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.


Book Synopsis The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition by : J. N. Reddy

Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition written by J. N. Reddy and published by CRC Press. This book was released on 2010-04-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.