Flexible Spacecraft Dynamics, Control and Guidance

Flexible Spacecraft Dynamics, Control and Guidance

Author: Leonardo Mazzini

Publisher: Springer

Published: 2015-10-27

Total Pages: 363

ISBN-13: 3319255401

DOWNLOAD EBOOK

This book is an up-to-date compendium on spacecraft attitude and orbit control (AOC) that offers a systematic and complete treatment of the subject with the aim of imparting the theoretical and practical knowledge that is required by designers, engineers, and researchers. After an introduction on the kinematics of the flexible and agile space vehicles, the modern architecture and functions of an AOC system are described and the main AOC modes reviewed with possible design solutions and examples. The dynamics of the flexible body in space are then considered using an original Lagrangian approach suitable for the control applications of large space flexible structures. Subsequent chapters address optimal control theory, attitude control methods, and orbit control applications, including the optimal orbital transfer with finite and infinite thrust. The theory is integrated with a description of current propulsion systems, with the focus especially on the new electric propulsion systems and state of the art sensors and actuators.


Book Synopsis Flexible Spacecraft Dynamics, Control and Guidance by : Leonardo Mazzini

Download or read book Flexible Spacecraft Dynamics, Control and Guidance written by Leonardo Mazzini and published by Springer. This book was released on 2015-10-27 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an up-to-date compendium on spacecraft attitude and orbit control (AOC) that offers a systematic and complete treatment of the subject with the aim of imparting the theoretical and practical knowledge that is required by designers, engineers, and researchers. After an introduction on the kinematics of the flexible and agile space vehicles, the modern architecture and functions of an AOC system are described and the main AOC modes reviewed with possible design solutions and examples. The dynamics of the flexible body in space are then considered using an original Lagrangian approach suitable for the control applications of large space flexible structures. Subsequent chapters address optimal control theory, attitude control methods, and orbit control applications, including the optimal orbital transfer with finite and infinite thrust. The theory is integrated with a description of current propulsion systems, with the focus especially on the new electric propulsion systems and state of the art sensors and actuators.


Space Vehicle Dynamics and Control

Space Vehicle Dynamics and Control

Author: Bong Wie

Publisher: AIAA

Published: 1998

Total Pages: 692

ISBN-13: 9781563472619

DOWNLOAD EBOOK

A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR


Book Synopsis Space Vehicle Dynamics and Control by : Bong Wie

Download or read book Space Vehicle Dynamics and Control written by Bong Wie and published by AIAA. This book was released on 1998 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR


Spacecraft Dynamics and Control

Spacecraft Dynamics and Control

Author: Yongchun Xie

Publisher: Springer Nature

Published: 2021-07-13

Total Pages: 422

ISBN-13: 9813364483

DOWNLOAD EBOOK

This book presents up-to-date concepts and design methods relating to space dynamics and control, including spacecraft attitude control, orbit control, and guidance, navigation, and control (GNC), summarizing the research advances in control theory and methods and engineering practice from Beijing Institute of Control Engineering over the years. The control schemes and systems based on these achievements have been successfully applied to remote sensing satellites, communication satellites, navigation satellites, new technology test satellites, Shenzhou manned spacecraft, Tianzhou freight spacecraft, Tiangong 1/2 space laboratories, Chang'e lunar explorers, and many other missions. Further, the research serves as a guide for follow-up engineering developments in manned lunar engineering, deep space exploration, and on-orbit service missions.


Book Synopsis Spacecraft Dynamics and Control by : Yongchun Xie

Download or read book Spacecraft Dynamics and Control written by Yongchun Xie and published by Springer Nature. This book was released on 2021-07-13 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents up-to-date concepts and design methods relating to space dynamics and control, including spacecraft attitude control, orbit control, and guidance, navigation, and control (GNC), summarizing the research advances in control theory and methods and engineering practice from Beijing Institute of Control Engineering over the years. The control schemes and systems based on these achievements have been successfully applied to remote sensing satellites, communication satellites, navigation satellites, new technology test satellites, Shenzhou manned spacecraft, Tianzhou freight spacecraft, Tiangong 1/2 space laboratories, Chang'e lunar explorers, and many other missions. Further, the research serves as a guide for follow-up engineering developments in manned lunar engineering, deep space exploration, and on-orbit service missions.


Control of Spacecraft and Aircraft

Control of Spacecraft and Aircraft

Author: Arthur E. Bryson Jr.

Publisher: Princeton University Press

Published: 2015-11-03

Total Pages: 406

ISBN-13: 1400880033

DOWNLOAD EBOOK

Here a leading researcher provides a comprehensive treatment of the design of automatic control logic for spacecraft and aircraft. In this book Arthur Bryson describes the linear-quadratic-regulator (LQR) method of feedback control synthesis, which coordinates multiple controls, producing graceful maneuvers comparable to those of an expert pilot. The first half of the work is about attitude control of rigid and flexible spacecraft using momentum wheels, spin, fixed thrusters, and gimbaled engines. Guidance for nearly circular orbits is discussed. The second half is about aircraft attitude and flight path control. This section discusses autopilot designs for cruise, climb-descent, coordinated turns, and automatic landing. One chapter deals with controlling helicopters near hover, and another offers an introduction to the stabilization of aeroelastic instabilities. Throughout the book there is a strong emphasis on the mathematical modeling necessary for designing a good feedback control system. The appendixes summarize analysis of linear dynamic systems, synthesis of analog and digital feedback control, simulation, and modeling of flexible vehicles.


Book Synopsis Control of Spacecraft and Aircraft by : Arthur E. Bryson Jr.

Download or read book Control of Spacecraft and Aircraft written by Arthur E. Bryson Jr. and published by Princeton University Press. This book was released on 2015-11-03 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here a leading researcher provides a comprehensive treatment of the design of automatic control logic for spacecraft and aircraft. In this book Arthur Bryson describes the linear-quadratic-regulator (LQR) method of feedback control synthesis, which coordinates multiple controls, producing graceful maneuvers comparable to those of an expert pilot. The first half of the work is about attitude control of rigid and flexible spacecraft using momentum wheels, spin, fixed thrusters, and gimbaled engines. Guidance for nearly circular orbits is discussed. The second half is about aircraft attitude and flight path control. This section discusses autopilot designs for cruise, climb-descent, coordinated turns, and automatic landing. One chapter deals with controlling helicopters near hover, and another offers an introduction to the stabilization of aeroelastic instabilities. Throughout the book there is a strong emphasis on the mathematical modeling necessary for designing a good feedback control system. The appendixes summarize analysis of linear dynamic systems, synthesis of analog and digital feedback control, simulation, and modeling of flexible vehicles.


Introduction to Dynamics and Control of Flexible Structures

Introduction to Dynamics and Control of Flexible Structures

Author: John L. Junkins

Publisher: AIAA

Published: 1993

Total Pages: 478

ISBN-13: 9781600860799

DOWNLOAD EBOOK


Book Synopsis Introduction to Dynamics and Control of Flexible Structures by : John L. Junkins

Download or read book Introduction to Dynamics and Control of Flexible Structures written by John L. Junkins and published by AIAA. This book was released on 1993 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Rigid-Flexible Coupling Dynamics and Control of Flexible Spacecraft with Time-Varying Parameters

Rigid-Flexible Coupling Dynamics and Control of Flexible Spacecraft with Time-Varying Parameters

Author: Jie Wang

Publisher: Springer Nature

Published: 2021-09-15

Total Pages: 190

ISBN-13: 9811650977

DOWNLOAD EBOOK

This book presents the dynamic modeling and attitude control of flexible spacecraft with time-varying parameters. The dynamic characteristics, vibration control methods and attitude stabilization methods for spacecraft are systematically studied in respects of the theoretical modeling, numerical simulation and the ground experiment. Three active control theories in complex mode space are presented for flexible space structures. Optimal slew strategies based on variable amplitudes input shaping methods and coupling control methods are proposed for stabilization of flexible spacecraft. The research provides an important way to solve the problem of high-precision attitude control of flexible spacecraft with time-varying parameters. This book is appropriate for the researchers who focus on the multi-body dynamics, attitude and vibration control of flexible spacecraft.


Book Synopsis Rigid-Flexible Coupling Dynamics and Control of Flexible Spacecraft with Time-Varying Parameters by : Jie Wang

Download or read book Rigid-Flexible Coupling Dynamics and Control of Flexible Spacecraft with Time-Varying Parameters written by Jie Wang and published by Springer Nature. This book was released on 2021-09-15 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the dynamic modeling and attitude control of flexible spacecraft with time-varying parameters. The dynamic characteristics, vibration control methods and attitude stabilization methods for spacecraft are systematically studied in respects of the theoretical modeling, numerical simulation and the ground experiment. Three active control theories in complex mode space are presented for flexible space structures. Optimal slew strategies based on variable amplitudes input shaping methods and coupling control methods are proposed for stabilization of flexible spacecraft. The research provides an important way to solve the problem of high-precision attitude control of flexible spacecraft with time-varying parameters. This book is appropriate for the researchers who focus on the multi-body dynamics, attitude and vibration control of flexible spacecraft.


Spacecraft Formation Flying

Spacecraft Formation Flying

Author: Kyle Alfriend

Publisher: Elsevier

Published: 2009-11-16

Total Pages: 403

ISBN-13: 0080559654

DOWNLOAD EBOOK

Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier’s Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation


Book Synopsis Spacecraft Formation Flying by : Kyle Alfriend

Download or read book Spacecraft Formation Flying written by Kyle Alfriend and published by Elsevier. This book was released on 2009-11-16 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier’s Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation


Fault-Tolerant Attitude Control of Spacecraft

Fault-Tolerant Attitude Control of Spacecraft

Author: Qinglei Hu

Publisher: Elsevier

Published: 2021-06-09

Total Pages: 306

ISBN-13: 0323901247

DOWNLOAD EBOOK

Fault-Tolerant Attitude Control of Spacecraft presents the fundamentals of spacecraft fault-tolerant attitude control systems, along with the most recent research and advanced, nonlinear control techniques. This book gives researchers a self-contained guide to the complex tasks of envisaging, designing, implementing and experimenting by presenting designs for integrated modeling, dynamics, fault-tolerant attitude control, and fault reconstruction for spacecraft. Specifically, the book gives a full literature review and presents preliminaries and mathematical models, robust fault-tolerant attitude control, fault-tolerant attitude control with actuator saturation, velocity-free fault tolerant attitude control, finite-time fault-tolerant attitude tracking control, and active fault-tolerant attitude contour. Finally, the book looks at the future of this interesting topic, offering readers a one-stop solution for those working on fault-tolerant attitude control for spacecraft. Presents the fundamentals of fault-tolerant attitude control systems for spacecraft in one practical solution Gives the latest research and thinking on nonlinear attitude control, fault tolerant control, and reliable attitude control Brings together concepts in fault control theory, fault diagnosis, and attitude control for spacecraft Covers advances in theory, technological aspects, and applications in spacecraft Presents detailed numerical and simulation results to assist engineers Offers a clear, systematic reference on fault-tolerant control and attitude control for spacecraft


Book Synopsis Fault-Tolerant Attitude Control of Spacecraft by : Qinglei Hu

Download or read book Fault-Tolerant Attitude Control of Spacecraft written by Qinglei Hu and published by Elsevier. This book was released on 2021-06-09 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fault-Tolerant Attitude Control of Spacecraft presents the fundamentals of spacecraft fault-tolerant attitude control systems, along with the most recent research and advanced, nonlinear control techniques. This book gives researchers a self-contained guide to the complex tasks of envisaging, designing, implementing and experimenting by presenting designs for integrated modeling, dynamics, fault-tolerant attitude control, and fault reconstruction for spacecraft. Specifically, the book gives a full literature review and presents preliminaries and mathematical models, robust fault-tolerant attitude control, fault-tolerant attitude control with actuator saturation, velocity-free fault tolerant attitude control, finite-time fault-tolerant attitude tracking control, and active fault-tolerant attitude contour. Finally, the book looks at the future of this interesting topic, offering readers a one-stop solution for those working on fault-tolerant attitude control for spacecraft. Presents the fundamentals of fault-tolerant attitude control systems for spacecraft in one practical solution Gives the latest research and thinking on nonlinear attitude control, fault tolerant control, and reliable attitude control Brings together concepts in fault control theory, fault diagnosis, and attitude control for spacecraft Covers advances in theory, technological aspects, and applications in spacecraft Presents detailed numerical and simulation results to assist engineers Offers a clear, systematic reference on fault-tolerant control and attitude control for spacecraft


Spacecraft Dynamics and Control

Spacecraft Dynamics and Control

Author: Enrico Canuto

Publisher: Butterworth-Heinemann

Published: 2018-03-08

Total Pages: 790

ISBN-13: 0081017952

DOWNLOAD EBOOK

Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems. The book begins with an extensive introduction to attitude geometry and algebra and ends with the core themes: state-space dynamics and Embedded Model Control. Fundamentals of orbit, attitude and environment dynamics are treated giving emphasis to state-space formulation, disturbance dynamics, state feedback and prediction, closed-loop stability. Sensors and actuators are treated giving emphasis to their dynamics and modelling of measurement errors. Numerical tables are included and their data employed for numerical simulations. Orbit and attitude control problems of the European GOCE mission are the inspiration of numerical exercises and simulations. The suite of the attitude control modes of a GOCE-like mission is designed and simulated around the so-called mission state predictor. Solved and unsolved exercises are included within the text - and not separated at the end of chapters - for better understanding, training and application. Simulated results and their graphical plots are developed through MATLAB/Simulink code.


Book Synopsis Spacecraft Dynamics and Control by : Enrico Canuto

Download or read book Spacecraft Dynamics and Control written by Enrico Canuto and published by Butterworth-Heinemann. This book was released on 2018-03-08 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems. The book begins with an extensive introduction to attitude geometry and algebra and ends with the core themes: state-space dynamics and Embedded Model Control. Fundamentals of orbit, attitude and environment dynamics are treated giving emphasis to state-space formulation, disturbance dynamics, state feedback and prediction, closed-loop stability. Sensors and actuators are treated giving emphasis to their dynamics and modelling of measurement errors. Numerical tables are included and their data employed for numerical simulations. Orbit and attitude control problems of the European GOCE mission are the inspiration of numerical exercises and simulations. The suite of the attitude control modes of a GOCE-like mission is designed and simulated around the so-called mission state predictor. Solved and unsolved exercises are included within the text - and not separated at the end of chapters - for better understanding, training and application. Simulated results and their graphical plots are developed through MATLAB/Simulink code.


Fundamental Spacecraft Dynamics and Control

Fundamental Spacecraft Dynamics and Control

Author: Weiduo Hu

Publisher: John Wiley & Sons

Published: 2015-11-02

Total Pages: 301

ISBN-13: 1118753534

DOWNLOAD EBOOK

An extensive text reference includes around an asteroid – a new and important topic Covers the most updated contents in spacecraft dynamics and control, both in theory and application Introduces the application to motion around asteroids – a new and important topic Written by a very experienced researcher in this area


Book Synopsis Fundamental Spacecraft Dynamics and Control by : Weiduo Hu

Download or read book Fundamental Spacecraft Dynamics and Control written by Weiduo Hu and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extensive text reference includes around an asteroid – a new and important topic Covers the most updated contents in spacecraft dynamics and control, both in theory and application Introduces the application to motion around asteroids – a new and important topic Written by a very experienced researcher in this area