Fluid-Structure Interactions in Low-Reynolds-Number Flows

Fluid-Structure Interactions in Low-Reynolds-Number Flows

Author: Camille Duprat

Publisher: Royal Society of Chemistry

Published: 2016

Total Pages: 498

ISBN-13: 1849738130

DOWNLOAD EBOOK

An approachable introduction to low Reynolds number flows and elasticity for those new to the area across engineering, physics, chemistry and biology.


Book Synopsis Fluid-Structure Interactions in Low-Reynolds-Number Flows by : Camille Duprat

Download or read book Fluid-Structure Interactions in Low-Reynolds-Number Flows written by Camille Duprat and published by Royal Society of Chemistry. This book was released on 2016 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: An approachable introduction to low Reynolds number flows and elasticity for those new to the area across engineering, physics, chemistry and biology.


Fluid Structure Interaction VII

Fluid Structure Interaction VII

Author: C. A. Brebbia

Publisher: WIT Press

Published: 2013

Total Pages: 293

ISBN-13: 1845647009

DOWNLOAD EBOOK

Containing papers presented at the Seventh International Conference on the topic, this book covers new developments in fluid structure interaction problems. First organised in 2001, the conference includes contributions from international experts on a variety of topics, including: Structure response to severe shock and blast; Hydrodynamic forces; Aeroelasticity; Computational methods; Flow induced vibrations; Experimental studies and validation; Bioengineering applications; Offshore structures; Soil structure interaction.


Book Synopsis Fluid Structure Interaction VII by : C. A. Brebbia

Download or read book Fluid Structure Interaction VII written by C. A. Brebbia and published by WIT Press. This book was released on 2013 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Containing papers presented at the Seventh International Conference on the topic, this book covers new developments in fluid structure interaction problems. First organised in 2001, the conference includes contributions from international experts on a variety of topics, including: Structure response to severe shock and blast; Hydrodynamic forces; Aeroelasticity; Computational methods; Flow induced vibrations; Experimental studies and validation; Bioengineering applications; Offshore structures; Soil structure interaction.


Fundamental Trends in Fluid-structure Interaction

Fundamental Trends in Fluid-structure Interaction

Author: Giovanni Paolo Galdi

Publisher: World Scientific

Published: 2010

Total Pages: 302

ISBN-13: 9814299324

DOWNLOAD EBOOK

The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. Fundamental Trends in Fluid-Structure Interaction is a unique collection of important papers written by world-renowned experts aimed at furnishing the highest level of development in several significant areas of fluid-structure interactions. The contributions cover several aspects of this discipline, from mathematical analysis, numerical simulation and modeling viewpoints, including motion of rigid and elastic bodies in a viscous liquid, particulate flow and hemodynamic.


Book Synopsis Fundamental Trends in Fluid-structure Interaction by : Giovanni Paolo Galdi

Download or read book Fundamental Trends in Fluid-structure Interaction written by Giovanni Paolo Galdi and published by World Scientific. This book was released on 2010 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. Fundamental Trends in Fluid-Structure Interaction is a unique collection of important papers written by world-renowned experts aimed at furnishing the highest level of development in several significant areas of fluid-structure interactions. The contributions cover several aspects of this discipline, from mathematical analysis, numerical simulation and modeling viewpoints, including motion of rigid and elastic bodies in a viscous liquid, particulate flow and hemodynamic.


A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight

A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight

Author: Marcos Vanella

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight by : Marcos Vanella

Download or read book A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight written by Marcos Vanella and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Fluid-Structure-Sound Interactions and Control

Fluid-Structure-Sound Interactions and Control

Author: Marianna Braza

Publisher: Springer Nature

Published: 2021-05-05

Total Pages: 384

ISBN-13: 9813349603

DOWNLOAD EBOOK

This book contains a thorough and unique record of recent advances in the important scientific fields fluid–structure interaction, acoustics and control of priority interest in the academic community and also in an industrial context regarding new engineering designs. It updates advances in these fields by presenting state-of-the-art developments and achievements since the previous Book published by Springer in 2018 after the 4th FSSIC Symposium. This book is unique within the related literature investigating advances in these fields because it addresses them in a complementary way and thereby enhances cross-fertilization between them, whereas other books treat these fields separately.


Book Synopsis Fluid-Structure-Sound Interactions and Control by : Marianna Braza

Download or read book Fluid-Structure-Sound Interactions and Control written by Marianna Braza and published by Springer Nature. This book was released on 2021-05-05 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a thorough and unique record of recent advances in the important scientific fields fluid–structure interaction, acoustics and control of priority interest in the academic community and also in an industrial context regarding new engineering designs. It updates advances in these fields by presenting state-of-the-art developments and achievements since the previous Book published by Springer in 2018 after the 4th FSSIC Symposium. This book is unique within the related literature investigating advances in these fields because it addresses them in a complementary way and thereby enhances cross-fertilization between them, whereas other books treat these fields separately.


Fluid-Structure Interactions

Fluid-Structure Interactions

Author: Michael P. Paidoussis

Publisher: Academic Press

Published: 2013-12-07

Total Pages: 885

ISBN-13: 0123973139

DOWNLOAD EBOOK

The first of two books concentrating on the dynamics of slender bodies within or containing axial flow, Fluid-Structure Interaction, Volume 1 covers the fundamentals and mechanisms giving rise to flow-induced vibration, with a particular focus on the challenges associated with pipes conveying fluid. This volume has been thoroughly updated to reference the latest developments in the field, with a continued emphasis on the understanding of dynamical behaviour and analytical methods needed to provide long-term solutions and validate the latest computational methods and codes. In this edition, Chapter 7 from Volume 2 has also been moved to Volume 1, meaning that Volume 1 now mainly treats the dynamics of systems subjected to internal flow, whereas in Volume 2 the axial flow is in most cases external to the flow or annular. Provides an in-depth review of an extensive range of fluid-structure interaction topics, with detailed real-world examples and thorough referencing throughout for additional detail Organized by structure and problem type, allowing you to dip into the sections that are relevant to the particular problem you are facing, with numerous appendices containing the equations relevant to specific problems Supports development of long-term solutions by focusing on the fundamentals and mechanisms needed to understand underlying causes and operating conditions under which apparent solutions might not prove effective


Book Synopsis Fluid-Structure Interactions by : Michael P. Paidoussis

Download or read book Fluid-Structure Interactions written by Michael P. Paidoussis and published by Academic Press. This book was released on 2013-12-07 with total page 885 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of two books concentrating on the dynamics of slender bodies within or containing axial flow, Fluid-Structure Interaction, Volume 1 covers the fundamentals and mechanisms giving rise to flow-induced vibration, with a particular focus on the challenges associated with pipes conveying fluid. This volume has been thoroughly updated to reference the latest developments in the field, with a continued emphasis on the understanding of dynamical behaviour and analytical methods needed to provide long-term solutions and validate the latest computational methods and codes. In this edition, Chapter 7 from Volume 2 has also been moved to Volume 1, meaning that Volume 1 now mainly treats the dynamics of systems subjected to internal flow, whereas in Volume 2 the axial flow is in most cases external to the flow or annular. Provides an in-depth review of an extensive range of fluid-structure interaction topics, with detailed real-world examples and thorough referencing throughout for additional detail Organized by structure and problem type, allowing you to dip into the sections that are relevant to the particular problem you are facing, with numerous appendices containing the equations relevant to specific problems Supports development of long-term solutions by focusing on the fundamentals and mechanisms needed to understand underlying causes and operating conditions under which apparent solutions might not prove effective


Advances in Fluid-Structure Interaction

Advances in Fluid-Structure Interaction

Author: Marianna Braza

Publisher: Springer

Published: 2016-04-07

Total Pages: 358

ISBN-13: 3319273868

DOWNLOAD EBOOK

This book addresses flow separation within the context of fluid-structure interaction phenomena. Here, new findings from two research communities focusing on fluids and structures are brought together, emphasizing the importance of a unified multidisciplinary approach. The book covers the theory, experimental findings, numerical simulations, and modeling in fluid dynamics and structural mechanics for both incompressible and compressible separated unsteady flows. There is a focus on the morphing of lifting structures in order to increase their aerodynamic and/or hydrodynamic performances, to control separation and to reduce noise, as well as to inspire the design of novel structures. The different chapters are based on contributions presented at the ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction held in Mykonos, Greece, 17-21 June, 2013 and include extended discussions and new highlights. The book is intended for students, researchers and practitioners in the broad field of computational fluid dynamics and computational structural mechanics. It aims at supporting them while dealing with practical issues, such as developing control strategies for unsteady separation and applying smart materials and biomimetic approaches for design and control.


Book Synopsis Advances in Fluid-Structure Interaction by : Marianna Braza

Download or read book Advances in Fluid-Structure Interaction written by Marianna Braza and published by Springer. This book was released on 2016-04-07 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses flow separation within the context of fluid-structure interaction phenomena. Here, new findings from two research communities focusing on fluids and structures are brought together, emphasizing the importance of a unified multidisciplinary approach. The book covers the theory, experimental findings, numerical simulations, and modeling in fluid dynamics and structural mechanics for both incompressible and compressible separated unsteady flows. There is a focus on the morphing of lifting structures in order to increase their aerodynamic and/or hydrodynamic performances, to control separation and to reduce noise, as well as to inspire the design of novel structures. The different chapters are based on contributions presented at the ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction held in Mykonos, Greece, 17-21 June, 2013 and include extended discussions and new highlights. The book is intended for students, researchers and practitioners in the broad field of computational fluid dynamics and computational structural mechanics. It aims at supporting them while dealing with practical issues, such as developing control strategies for unsteady separation and applying smart materials and biomimetic approaches for design and control.


Fluid-Structure Interactions

Fluid-Structure Interactions

Author: Michael P. Païdoussis

Publisher: Cambridge University Press

Published: 2010-12-13

Total Pages: 413

ISBN-13: 1139491903

DOWNLOAD EBOOK

Structures in contact with fluid flow, whether natural or man-made, are inevitably subject to flow-induced forces and flow-induced vibration: from plant leaves to traffic signs and to more substantial structures, such as bridge decks and heat exchanger tubes. Under certain conditions the vibration may be self-excited, and it is usually referred to as an instability. These instabilities and, more specifically, the conditions under which they arise are of great importance to designers and operators of the systems concerned because of the significant potential to cause damage in the short term. Such flow-induced instabilities are the subject of this book. In particular, the flow-induced instabilities treated in this book are associated with cross-flow, that is, flow normal to the long axis of the structure. The book treats a specific set of problems that are fundamentally and technologically important: galloping, vortex-shedding oscillations under lock-in conditions and rain-and-wind-induced vibrations, among others.


Book Synopsis Fluid-Structure Interactions by : Michael P. Païdoussis

Download or read book Fluid-Structure Interactions written by Michael P. Païdoussis and published by Cambridge University Press. This book was released on 2010-12-13 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structures in contact with fluid flow, whether natural or man-made, are inevitably subject to flow-induced forces and flow-induced vibration: from plant leaves to traffic signs and to more substantial structures, such as bridge decks and heat exchanger tubes. Under certain conditions the vibration may be self-excited, and it is usually referred to as an instability. These instabilities and, more specifically, the conditions under which they arise are of great importance to designers and operators of the systems concerned because of the significant potential to cause damage in the short term. Such flow-induced instabilities are the subject of this book. In particular, the flow-induced instabilities treated in this book are associated with cross-flow, that is, flow normal to the long axis of the structure. The book treats a specific set of problems that are fundamentally and technologically important: galloping, vortex-shedding oscillations under lock-in conditions and rain-and-wind-induced vibrations, among others.


Fluid-Structure-Sound Interactions and Control

Fluid-Structure-Sound Interactions and Control

Author: Yu Zhou

Publisher: Springer

Published: 2015-12-17

Total Pages: 433

ISBN-13: 366248868X

DOWNLOAD EBOOK

These proceedings primarily focus on advances in the theory, experiments, and numerical simulations of turbulence in the contexts of flow-induced vibration and noise, as well as their control. Fluid-related structural vibration and noise problems are often encountered in many engineering fields, increasingly making them a cause for concern. The FSSIC conference, held on 5-9 July 2015 in Perth, featured prominent keynote speakers such as John Kim, Nigel Peake, Song Fu and Colin Hansen, as well as talks on a broad range of topics: turbulence, fluid-structure interaction, fluid-related noise and the control/management aspects of these research areas, many of which are clearly interdisciplinary in nature. It provided a forum for academics, scientists and engineers working in all branches of Fluid-Structure-Sound Interactions and Control (FSSIC) to exchange and share the latest developments, ideas and advances, bringing them together researchers from East and West to push forward the frontiers of FSSIC, ensuring that the proceedings will be of interest to a broad engineering community.


Book Synopsis Fluid-Structure-Sound Interactions and Control by : Yu Zhou

Download or read book Fluid-Structure-Sound Interactions and Control written by Yu Zhou and published by Springer. This book was released on 2015-12-17 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings primarily focus on advances in the theory, experiments, and numerical simulations of turbulence in the contexts of flow-induced vibration and noise, as well as their control. Fluid-related structural vibration and noise problems are often encountered in many engineering fields, increasingly making them a cause for concern. The FSSIC conference, held on 5-9 July 2015 in Perth, featured prominent keynote speakers such as John Kim, Nigel Peake, Song Fu and Colin Hansen, as well as talks on a broad range of topics: turbulence, fluid-structure interaction, fluid-related noise and the control/management aspects of these research areas, many of which are clearly interdisciplinary in nature. It provided a forum for academics, scientists and engineers working in all branches of Fluid-Structure-Sound Interactions and Control (FSSIC) to exchange and share the latest developments, ideas and advances, bringing them together researchers from East and West to push forward the frontiers of FSSIC, ensuring that the proceedings will be of interest to a broad engineering community.


Understanding the Flow Structure of Low Reynolds Number Flows

Understanding the Flow Structure of Low Reynolds Number Flows

Author: Albert Jarvis

Publisher:

Published: 2018

Total Pages: 88

ISBN-13:

DOWNLOAD EBOOK

Ocean flows and the mechanisms by which their contents are organized has been a longstanding area of interest in applied mathematics. In recent years, a new theory has been developed to identify the structures responsible for the organization of fluid particles within complex geophysical flows. This theory is known as the theory of Lagrangian Coherent Structures (LCS) and details which structures are responsible for the organization of the flow and how to identify them. Being able to identify these LCS in real time has far reaching implications ranging from developing strategies for search and rescue missions to identifying the best intervention strategy to clean up an environmental disaster. A strategy has been developed to identify these structures in real timed using autonomous ocean robots. Although there is a strong understanding of how LCS affect fluid particles, the study of how LCS affect inertial particles is an area wide open for exploration. The robotic strategy depends on understanding the affects the structures will have on the motion of these robots. We focus on gaining a fundamental understanding of how LCS affect inertial particle motion by performing experiments of inertial particles in a variety of flows. We use numerical simulations and theory to guide our experimental work. We lay a strong framework for future experiments and make some novel observations along the way.


Book Synopsis Understanding the Flow Structure of Low Reynolds Number Flows by : Albert Jarvis

Download or read book Understanding the Flow Structure of Low Reynolds Number Flows written by Albert Jarvis and published by . This book was released on 2018 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ocean flows and the mechanisms by which their contents are organized has been a longstanding area of interest in applied mathematics. In recent years, a new theory has been developed to identify the structures responsible for the organization of fluid particles within complex geophysical flows. This theory is known as the theory of Lagrangian Coherent Structures (LCS) and details which structures are responsible for the organization of the flow and how to identify them. Being able to identify these LCS in real time has far reaching implications ranging from developing strategies for search and rescue missions to identifying the best intervention strategy to clean up an environmental disaster. A strategy has been developed to identify these structures in real timed using autonomous ocean robots. Although there is a strong understanding of how LCS affect fluid particles, the study of how LCS affect inertial particles is an area wide open for exploration. The robotic strategy depends on understanding the affects the structures will have on the motion of these robots. We focus on gaining a fundamental understanding of how LCS affect inertial particle motion by performing experiments of inertial particles in a variety of flows. We use numerical simulations and theory to guide our experimental work. We lay a strong framework for future experiments and make some novel observations along the way.