Functional Polymers for Metal-ion Batteries

Functional Polymers for Metal-ion Batteries

Author: Shanqing Zhang

Publisher: John Wiley & Sons

Published: 2023-05-22

Total Pages: 229

ISBN-13: 3527350683

DOWNLOAD EBOOK

Functional Polymers for Metal-Ion Batteries Unique and useful book covering fundamental knowledge and practical applications of polymer materials in energy storage systems In Functional Polymers for Metal-Ion Batteries, the recent development and achievements of polymer-based materials are comprehensively analyzed in four directions, including electrode materials, binders, separators, and solid electrolytes, highlighting the working mechanisms, classification, design strategies, and practical applications of these polymer materials in mental-ion batteries. Specific sample topics covered in Functional Polymers for Metal-Ion Batteries include: Prominent advantages of various solid-state electrolytes, such as low flammability, easy processability, more tolerance to vibration, shock, and mechanical deformation Why and how functional polymers present opportunities to maximize energy density and pursue the sustainability of the battery industry How the application of functional polymers in metal-ion batteries helps enhance the high energy density of energy storage devices and reduce carbon footprint during production How development of functional separators could significantly lower the cost of battery manufacturing Providing a comprehensive understanding of the role of polymers in the whole configuration of metal-ion batteries from electrodes to electrolytes, Functional Polymers for Metal-Ion Batteries is an ideal resource for materials scientists, electrochemists, and polymer, solid state, and physical chemists who wish to understand the latest developments of this technology.


Book Synopsis Functional Polymers for Metal-ion Batteries by : Shanqing Zhang

Download or read book Functional Polymers for Metal-ion Batteries written by Shanqing Zhang and published by John Wiley & Sons. This book was released on 2023-05-22 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Polymers for Metal-Ion Batteries Unique and useful book covering fundamental knowledge and practical applications of polymer materials in energy storage systems In Functional Polymers for Metal-Ion Batteries, the recent development and achievements of polymer-based materials are comprehensively analyzed in four directions, including electrode materials, binders, separators, and solid electrolytes, highlighting the working mechanisms, classification, design strategies, and practical applications of these polymer materials in mental-ion batteries. Specific sample topics covered in Functional Polymers for Metal-Ion Batteries include: Prominent advantages of various solid-state electrolytes, such as low flammability, easy processability, more tolerance to vibration, shock, and mechanical deformation Why and how functional polymers present opportunities to maximize energy density and pursue the sustainability of the battery industry How the application of functional polymers in metal-ion batteries helps enhance the high energy density of energy storage devices and reduce carbon footprint during production How development of functional separators could significantly lower the cost of battery manufacturing Providing a comprehensive understanding of the role of polymers in the whole configuration of metal-ion batteries from electrodes to electrolytes, Functional Polymers for Metal-Ion Batteries is an ideal resource for materials scientists, electrochemists, and polymer, solid state, and physical chemists who wish to understand the latest developments of this technology.


Functional Polymers for Beyond-Li-ion Batteries

Functional Polymers for Beyond-Li-ion Batteries

Author: Hunter O. Ford

Publisher:

Published: 2021

Total Pages: 378

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Functional Polymers for Beyond-Li-ion Batteries by : Hunter O. Ford

Download or read book Functional Polymers for Beyond-Li-ion Batteries written by Hunter O. Ford and published by . This book was released on 2021 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Printed Batteries

Printed Batteries

Author: Senentxu Lanceros-Méndez

Publisher: John Wiley & Sons

Published: 2018-04-23

Total Pages: 270

ISBN-13: 1119287421

DOWNLOAD EBOOK

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.


Book Synopsis Printed Batteries by : Senentxu Lanceros-Méndez

Download or read book Printed Batteries written by Senentxu Lanceros-Méndez and published by John Wiley & Sons. This book was released on 2018-04-23 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.


Metal Ion-responsive Functional Polymers with Different Backbone Structures

Metal Ion-responsive Functional Polymers with Different Backbone Structures

Author: 林喻偵

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Metal Ion-responsive Functional Polymers with Different Backbone Structures by : 林喻偵

Download or read book Metal Ion-responsive Functional Polymers with Different Backbone Structures written by 林喻偵 and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Functional Design of Advanced Polymer Architectures for Improved Lithium-ion Batteries

Functional Design of Advanced Polymer Architectures for Improved Lithium-ion Batteries

Author: David G Mackanic

Publisher:

Published: 2020

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Lithium ion batteries (LIBs) are ubiquitous for applications in consumer electronics, electric vehicles, and grid-scale energy storage. Despite rapidly increasing demand, modern LIBs face significant challenges with regards to their safety and energy density. Additionally, the rigid nature of existing LIBs precludes their use in emerging applications in flexible/wearable electronics. Polymeric materials promise to address many of the issues facing LIBs, yet the existing polymers used commercially fall short of this goal. In this work, we design functional polymer materials to address three major challenges for next-generation LIBs. We explore the structure-property relationships of these polymer architectures in the context of ion transport, mechanical properties, and electrochemical performance. In the first project, a new polymer electrolyte is designed to replace the flammable liquid electrolyte in conventional LIBs. We study the effect of lithium ion coordination in polymer electrolytes and discover a modified polymeric backbone that loosely coordinates to lithium ions. The loose coordination of this new polymer electrolyte enables an improved lithium transference number of 0.54, compared to 0.2 achieved in conventional polymer electrolytes. This polymer electrolyte is demonstrated to operate effectively in a battery with a lithium-metal anode. In the second project, the learnings of the lithium coordination environment from the first project are used to design a multifunctional polymer coating to stabilize high energy density lithium metal anodes. We combined loosely-coordinating fluorinated ligands dynamically bonded with single-ion-conductive metal centers. The resulting supramolecular polymer network functions as an excellent lithium metal coating, allowing for achievement of one of the highest-reported coulombic efficiencies and cycle lives of a lithium metal anode. A systematic investigation of the chemical structure of the coating reveals that the properties of dynamic flowability, single-ion transport, and electrolyte blocking are synergistic in improving Li-metal coating performance. This coating is applied in a commercially relevant lithium metal full-cell and increases the cycle life over two-fold compared to an uncoated anode. The final project uses supramolecular polymer design to create ultra-robust ion transport materials. We show that when soft ion conducting segments are combined with strong dynamically bonded moieties in the polymer backbone, the ion transport properties can be decoupled from the mechanical properties. This decoupling enables for the creation of polymer electrolytes with extremely high toughness and high ionic conductivity. These supramolecular materials enable the fabrication of stretchable and deformable batteries that demonstrate respectable energy density even when stretched to 70% of their original length. Overall, the work demonstrated in this thesis provides a robust understanding towards designing polymer networks with tunable ion transport and mechanical properties. Additionally, the polymer materials demonstrated here provide promising avenues toward improving the safety, energy density, and flexibility of LIBs.


Book Synopsis Functional Design of Advanced Polymer Architectures for Improved Lithium-ion Batteries by : David G Mackanic

Download or read book Functional Design of Advanced Polymer Architectures for Improved Lithium-ion Batteries written by David G Mackanic and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium ion batteries (LIBs) are ubiquitous for applications in consumer electronics, electric vehicles, and grid-scale energy storage. Despite rapidly increasing demand, modern LIBs face significant challenges with regards to their safety and energy density. Additionally, the rigid nature of existing LIBs precludes their use in emerging applications in flexible/wearable electronics. Polymeric materials promise to address many of the issues facing LIBs, yet the existing polymers used commercially fall short of this goal. In this work, we design functional polymer materials to address three major challenges for next-generation LIBs. We explore the structure-property relationships of these polymer architectures in the context of ion transport, mechanical properties, and electrochemical performance. In the first project, a new polymer electrolyte is designed to replace the flammable liquid electrolyte in conventional LIBs. We study the effect of lithium ion coordination in polymer electrolytes and discover a modified polymeric backbone that loosely coordinates to lithium ions. The loose coordination of this new polymer electrolyte enables an improved lithium transference number of 0.54, compared to 0.2 achieved in conventional polymer electrolytes. This polymer electrolyte is demonstrated to operate effectively in a battery with a lithium-metal anode. In the second project, the learnings of the lithium coordination environment from the first project are used to design a multifunctional polymer coating to stabilize high energy density lithium metal anodes. We combined loosely-coordinating fluorinated ligands dynamically bonded with single-ion-conductive metal centers. The resulting supramolecular polymer network functions as an excellent lithium metal coating, allowing for achievement of one of the highest-reported coulombic efficiencies and cycle lives of a lithium metal anode. A systematic investigation of the chemical structure of the coating reveals that the properties of dynamic flowability, single-ion transport, and electrolyte blocking are synergistic in improving Li-metal coating performance. This coating is applied in a commercially relevant lithium metal full-cell and increases the cycle life over two-fold compared to an uncoated anode. The final project uses supramolecular polymer design to create ultra-robust ion transport materials. We show that when soft ion conducting segments are combined with strong dynamically bonded moieties in the polymer backbone, the ion transport properties can be decoupled from the mechanical properties. This decoupling enables for the creation of polymer electrolytes with extremely high toughness and high ionic conductivity. These supramolecular materials enable the fabrication of stretchable and deformable batteries that demonstrate respectable energy density even when stretched to 70% of their original length. Overall, the work demonstrated in this thesis provides a robust understanding towards designing polymer networks with tunable ion transport and mechanical properties. Additionally, the polymer materials demonstrated here provide promising avenues toward improving the safety, energy density, and flexibility of LIBs.


Functional Polymers and Nanomaterials for Emerging Membrane Applications

Functional Polymers and Nanomaterials for Emerging Membrane Applications

Author: G. Arthanareeswaran

Publisher: CRC Press

Published: 2023-12-07

Total Pages: 170

ISBN-13: 1003806015

DOWNLOAD EBOOK

This book provides an overview of the development and selection of functional polymers and nanomaterials for membrane development and their applications. It covers the definition, classification, and preparation of various functional polymers and nanocomposites, and highlights potential applications of functional polymers and nanomaterials in membrane technology. Details the selection of structural and functional materials, as well as material synthesis, modification, and characterization techniques Describes emerging applications of functional materials in wastewater treatment, desalination, energy, and bioremediation Includes numerous industrial case studies, practical examples and questions, providing a comprehensive introduction to the topic Discusses industrial potential, implementation, and limitations By combining aspects of both science and technology, this book serves as a useful resource for scientists and engineers working on membrane applications of materials.


Book Synopsis Functional Polymers and Nanomaterials for Emerging Membrane Applications by : G. Arthanareeswaran

Download or read book Functional Polymers and Nanomaterials for Emerging Membrane Applications written by G. Arthanareeswaran and published by CRC Press. This book was released on 2023-12-07 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the development and selection of functional polymers and nanomaterials for membrane development and their applications. It covers the definition, classification, and preparation of various functional polymers and nanocomposites, and highlights potential applications of functional polymers and nanomaterials in membrane technology. Details the selection of structural and functional materials, as well as material synthesis, modification, and characterization techniques Describes emerging applications of functional materials in wastewater treatment, desalination, energy, and bioremediation Includes numerous industrial case studies, practical examples and questions, providing a comprehensive introduction to the topic Discusses industrial potential, implementation, and limitations By combining aspects of both science and technology, this book serves as a useful resource for scientists and engineers working on membrane applications of materials.


Development of Functional Polymer Systems for Use in Lithium-ion Batteries

Development of Functional Polymer Systems for Use in Lithium-ion Batteries

Author: Michael James Jolley

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Development of Functional Polymer Systems for Use in Lithium-ion Batteries by : Michael James Jolley

Download or read book Development of Functional Polymer Systems for Use in Lithium-ion Batteries written by Michael James Jolley and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Sodium-Ion Batteries

Sodium-Ion Batteries

Author: Inamuddin

Publisher: Materials Research Forum LLC

Published: 2020-07-05

Total Pages: 278

ISBN-13: 1644900831

DOWNLOAD EBOOK

Sodium-ion batteries are likely to be the next-generation power sources. They offer higher safety than lithium-ion batteries and, most important, sodium is available in unlimited abundance. The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology. Keywords: Sodium-Ion Batteries, Lithium-Ion Batteries, Carbon Nanofibers, Conducting Polymers, Electrode Materials, Electrolytes, Graphene, Carbon Anodes, Magnetic Nanomaterials, Mn-based Materials, Sn-based Materials, Na-O2 Batteries, NASICON Electrodes, Organic Electrodes, Polyacetylene, Polyaniline, Polyphenylene, Redox Mediators, Reversible Capacity, Singlet Oxygen, Superoxide Stability.


Book Synopsis Sodium-Ion Batteries by : Inamuddin

Download or read book Sodium-Ion Batteries written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2020-07-05 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sodium-ion batteries are likely to be the next-generation power sources. They offer higher safety than lithium-ion batteries and, most important, sodium is available in unlimited abundance. The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology. Keywords: Sodium-Ion Batteries, Lithium-Ion Batteries, Carbon Nanofibers, Conducting Polymers, Electrode Materials, Electrolytes, Graphene, Carbon Anodes, Magnetic Nanomaterials, Mn-based Materials, Sn-based Materials, Na-O2 Batteries, NASICON Electrodes, Organic Electrodes, Polyacetylene, Polyaniline, Polyphenylene, Redox Mediators, Reversible Capacity, Singlet Oxygen, Superoxide Stability.


Hydrogels

Hydrogels

Author: Anuj Kumar

Publisher: CRC Press

Published: 2023-09-27

Total Pages: 372

ISBN-13: 1000926788

DOWNLOAD EBOOK

The demand for advanced energy devices such as high-performance batteries, supercapacitors, fuel cells, electrolyzers, and flexible/wearable devices is increasing rapidly. To meet such demand, high-performance and stable materials that could be used as active materials in these devices are much needed. This book focuses on the use of hydrogels in such emerging applications. The main objective of this book is to provide current, state-of-the-art development in hydrogel-based materials, their applications in energy, and their future challenges. This book covers the entire spectrum of hydrogels for their applications in a range of energy devices in terms of materials, various synthetic approaches, architectural aspects, design and technology of energy devices, and challenges. This book covers the fundamentals of hydrogels, various composites of hydrogels, design concepts, different technologies, and applications in the diverse energy area. All chapters are written by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries working in these areas. This book includes topics such as various approaches to synthesizing hydrogels, their characterizations, and emerging applications in the energy area. Fundamentals of energy devices, working principles, and their challenges are also covered. This book will provide new directions to scientists, researchers, and students to better understand hydrogel-based materials and their emerging applications in energy.


Book Synopsis Hydrogels by : Anuj Kumar

Download or read book Hydrogels written by Anuj Kumar and published by CRC Press. This book was released on 2023-09-27 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The demand for advanced energy devices such as high-performance batteries, supercapacitors, fuel cells, electrolyzers, and flexible/wearable devices is increasing rapidly. To meet such demand, high-performance and stable materials that could be used as active materials in these devices are much needed. This book focuses on the use of hydrogels in such emerging applications. The main objective of this book is to provide current, state-of-the-art development in hydrogel-based materials, their applications in energy, and their future challenges. This book covers the entire spectrum of hydrogels for their applications in a range of energy devices in terms of materials, various synthetic approaches, architectural aspects, design and technology of energy devices, and challenges. This book covers the fundamentals of hydrogels, various composites of hydrogels, design concepts, different technologies, and applications in the diverse energy area. All chapters are written by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries working in these areas. This book includes topics such as various approaches to synthesizing hydrogels, their characterizations, and emerging applications in the energy area. Fundamentals of energy devices, working principles, and their challenges are also covered. This book will provide new directions to scientists, researchers, and students to better understand hydrogel-based materials and their emerging applications in energy.


Functional Membranes for High Efficiency Molecule and Ion Transport

Functional Membranes for High Efficiency Molecule and Ion Transport

Author: Jingtao Wang

Publisher: Springer Nature

Published: 2023-01-23

Total Pages: 306

ISBN-13: 9811981558

DOWNLOAD EBOOK

This book provides an overview of functional membranes for efficient ion/molecule transfer and separation. It first presents the design, fabrication, structure, and performance of several kinds of membranes. Then, the application of membrane technology in organic solvent nanofiltration, hydrogen fuel cells, and solid-state lithium batteries is introduced. Furthermore, the book proposes strategies of strengthening the ion/molecular-level separation and transfer process in membrane processes. It also analyzes the development status, existing problems, and optimization methods in the field of membranes and membrane processes. Finally, it highlights the construction strategy of membrane structures, the structure–performance relationships as well as the transfer and separation mechanisms. The target group of this book is academics and researchers in materials science, chemical engineering, biomedical engineering, and other related fields.


Book Synopsis Functional Membranes for High Efficiency Molecule and Ion Transport by : Jingtao Wang

Download or read book Functional Membranes for High Efficiency Molecule and Ion Transport written by Jingtao Wang and published by Springer Nature. This book was released on 2023-01-23 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of functional membranes for efficient ion/molecule transfer and separation. It first presents the design, fabrication, structure, and performance of several kinds of membranes. Then, the application of membrane technology in organic solvent nanofiltration, hydrogen fuel cells, and solid-state lithium batteries is introduced. Furthermore, the book proposes strategies of strengthening the ion/molecular-level separation and transfer process in membrane processes. It also analyzes the development status, existing problems, and optimization methods in the field of membranes and membrane processes. Finally, it highlights the construction strategy of membrane structures, the structure–performance relationships as well as the transfer and separation mechanisms. The target group of this book is academics and researchers in materials science, chemical engineering, biomedical engineering, and other related fields.